Minimax principles for critical-point theory in applications to quasilinear boundary-value problems.
We show that the Maxwell equations in the low frequency limit, in a domain composed of insulating and conducting regions, has a saddle point structure, where the electric field in the insulating region is the Lagrange multiplier that enforces the curl-free constraint on the magnetic field. We propose a mixed finite element technique for solving this problem, and we show that, under mild regularity assumption on the data, Lagrange finite elements can be used as an alternative to edge elements.
We show that the Maxwell equations in the low frequency limit, in a domain composed of insulating and conducting regions, has a saddle point structure, where the electric field in the insulating region is the Lagrange multiplier that enforces the curl-free constraint on the magnetic field. We propose a mixed finite element technique for solving this problem, and we show that, under mild regularity assumption on the data, Lagrange finite elements can be used as an alternative to edge elements.
The approximation of a mixed formulation of elliptic variational inequalities is studied. Mixed formulation is defined as the problem of finding a saddle-point of a properly chosen Lagrangian on a certain convex set . Sufficient conditions, guaranteeing the convergence of approximate solutions are studied. Abstract results are applied to concrete examples.
In this paper we prove that every weak and strong local minimizer of the functional where , f grows like , g grows like and 1<q<p<2, is on an open subset of Ω such that . Such functionals naturally arise from nonlinear elasticity problems. The key point in order to obtain the partial regularity result is to establish an energy estimate of Caccioppoli type, which is based on an appropriate choice of the test functions. The limit case is also treated for weak local minimizers. ...
A multiplicative structure in the cohomological version of Conley index is described following a joint paper by the author with K. Gęba and W. Uss. In the case of equivariant flows we apply a normalization procedure known from equivariant degree theory and we propose a new continuation invariant. The theory is applied then to obtain a mountain pass type theorem. Another illustrative application is a result on multiple bifurcations for some elliptic PDE.
Questa è una rassegna di alcuni risultati recenti sui moltiplicatori spettrali dell'operatore di Ornstein-Uhlenbeck, un laplaciano naturale sullo spazio euclideo munito della misura gaussiana. I risultati sono inquadrati nell'ambito della teoria generale dei moltiplicatori spettrali per laplaciani generalizzati.