Displaying 101 – 120 of 208

Showing per page

Moyennes sphériques et opérateur de Helmholtz itéré

Francisco Vieli (1995)

Colloquium Mathematicae

Il est bien connu qu’une fonction f sur n est harmonique - Δf = 0 - si et seulement si sa moyenne sur toute sphère est égale à sa valeur au centre de cette sphère. De manière semblable, f vérifie l’équation de Helmholtz Δf + cf = 0 si et seulement si sa moyenne sur la sphère de centre x et de rayon r vaut Γ ( n / 2 ) ( r c / 2 ) ( 2 - n ) / 2 J ( n - 2 ) / 2 ( r c ) · f ( x ) . Dans ce travail, nous généralisons ces résultats à l’opérateur ( Δ + c ) k où k est un entier strictement positif et c une constante non nulle. Bien qu’une méthode pour y parvenir soit esquissée dans...

Multi-bump solutions for nonlinear Schrödinger equations with electromagnetic fields

Huirong Pi, Chunhua Wang (2013)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we are concerned with the existence of multi-bump solutions for a nonlinear Schrödinger equations with electromagnetic fields. We prove under some suitable conditions that for any positive integer m, there exists ε(m) > 0 such that, for 0 < ε < ε(m), the problem has an m-bump complex-valued solution. As a result, when ε → 0, the equation has more and more multi-bump complex-valued solutions.

Multilevel correction adaptive finite element method for semilinear elliptic equation

Qun Lin, Hehu Xie, Fei Xu (2015)

Applications of Mathematics

A type of adaptive finite element method is presented for semilinear elliptic problems based on multilevel correction scheme. The main idea of the method is to transform the semilinear elliptic equation into a sequence of linearized boundary value problems on the adaptive partitions and some semilinear elliptic problems on very low dimensional finite element spaces. Hence, solving the semilinear elliptic problem can reach almost the same efficiency as the adaptive method for the associated boundary...

Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions

Silvia Cingolani, Louis Jeanjean, Simone Secchi (2009)

ESAIM: Control, Optimisation and Calculus of Variations

In this work we consider the magnetic NLS equation ( i - A ( x ) ) 2 u + V ( x ) u - f ( | u | 2 ) u = 0 in N ( 0 . 1 ) where N 3 , A : N N is a magnetic potential, possibly unbounded, V : N is a multi-well electric potential, which can vanish somewhere, f is a subcritical nonlinear term. We prove the existence of a semiclassical multi-peak solution u : N to (0.1), under conditions on the nonlinearity which are nearly optimal.

Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions

Silvia Cingolani, Louis Jeanjean, Simone Secchi (2008)

ESAIM: Control, Optimisation and Calculus of Variations

In this work we consider the magnetic NLS equation ( i - A ( x ) ) 2 u + V ( x ) u - f ( | u | 2 ) u = 0 in N ( 0 . 1 ) where N 3 , A : N N is a magnetic potential, possibly unbounded, V : N is a multi-well electric potential, which can vanish somewhere, f is a subcritical nonlinear term. We prove the existence of a semiclassical multi-peak solution u : N to (0.1), under conditions on the nonlinearity which are nearly optimal.

Multiple end solutions to the Allen-Cahn equation in 2

Michał Kowalczyk, Yong Liu, Frank Pacard (2013/2014)

Séminaire Laurent Schwartz — EDP et applications

An entire solution of the Allen-Cahn equation Δ u = f ( u ) , where f is an odd function and has exactly three zeros at ± 1 and 0 , e.g. f ( u ) = u ( u 2 - 1 ) , is called a 2 k end solution if its nodal set is asymptotic to 2 k half lines, and if along each of these half lines the function u looks (up to a multiplication by - 1 ) like the one dimensional, odd, heteroclinic solution H , of H ' ' = f ( H ) . In this paper we present some recent advances in the theory of the multiple end solutions. We begin with the description of the moduli space of such solutions....

Currently displaying 101 – 120 of 208