-regularity results for quasilinear parabolic systems
The existence, uniqueness and regularity of the generalized local solution and the classical local solution to the periodic boundary value problem and Cauchy problem for the multidimensional coupled system of a nonlinear complex Schrödinger equation and a generalized IMBq equation
We study local and global Cauchy problems for the Semilinear Parabolic Equations ∂tU - ΔU = P(D) F(U) with initial data in fractional Sobolev spaces Hps(Rn). In most of the studies on this subject, the initial data U0(x) belongs to Lebesgue spaces Lp(Rn) or to supercritical fractional Sobolev spaces Hps(Rn) (s > n/p). Our purpose is to study the intermediate cases (namely for 0 < s < n/p). We give some mapping properties for functions with polynomial growth on subcritical Hps(Rn)...
Global solvability and asymptotics of semilinear parabolic Cauchy problems in are considered. Following the approach of A. Mielke [15] these problems are investigated in weighted Sobolev spaces. The paper provides also a theory of second order elliptic operators in such spaces considered over , . In particular, the generation of analytic semigroups and the embeddings for the domains of fractional powers of elliptic operators are discussed.
We present a reduced basis offline/online procedure for viscous Burgers initial boundary value problem, enabling efficient approximate computation of the solutions of this equation for parametrized viscosity and initial and boundary value data. This procedure comes with a fast-evaluated rigorous error bound certifying the approximation procedure. Our numerical experiments show significant computational savings, as well as efficiency of the error bound.
We consider a quasilinear parabolic system which has the structure of Patlak-Keller-Segel model of chemotaxis and contains a class of models with degenerate diffusion. A cell population is described in terms of volume fraction or density. In the latter case, it is assumed that there is a threshold value which the density of cells cannot exceed. Existence and uniqueness of solutions to the corresponding initial-boundary value problem and existence of space inhomogeneous stationary solutions are discussed....
On étudie la classification des solutions du problème elliptiqueoù et une fonction changeant de signe. En utilisant une méthode de tire, On montre qu’en partant avec une dérivée initiale nulle toutes les solutions sont globales. De plus si et l’ensemble des solutions est constitué d’une seule solution à support compact et de deux familles de solutions ; celles qui sont strictement positives et celles qui changent de signes. On montre aussi que ces deux familles tendent vers l’infini quand...
We study the compactness of Feller semigroups generated by second order elliptic partial differential operators with unbounded coefficients in spaces of continuous functions in .
We compare dewetting characteristics of a thin nonwetting solid film in the absence of stress, for two models of a wetting potential: the exponential and the algebraic. The exponential model is a one-parameter (r) model, and the algebraic model is a two-parameter (r, m) model, where r is the ratio of the characteristic wetting length to the height of the unperturbed film, and m is the exponent of h (film height) in a smooth function that interpolates the system's surface energy above and below...
In this work we describe two schemes for solving level set equation in 3D with a method based on finite volumes. These schemes use the so-called dual volumes as in [Coudiére, Y., Hubert, F.: A 3D discrete duality finite volume method for nonlinear elliptic equations Algoritmy 2009 (2009), 51–60.], [Hermeline, F.: A finite volume method for approximating 3D diffusion operators on general meshes Journal of Computational Physics 228, 16 (2009), 5763–5786.], where they are used for the nonlinear elliptic...
A nonlinear parabolic problem with the Newton boundary conditions and its weak formulation are examined. The problem describes nonstationary heat conduction in inhomogeneous and anisotropic media. We prove a comparison principle which guarantees that for greater data we obtain, in general, greater weak solutions. A new strategy of proving the comparison principle is presented.
We consider a parabolic 2D Free Boundary Problem, with jump conditions at the interface. Its planar travelling-wave solutions are orbitally stable provided the bifurcation parameter does not exceed a critical value . The latter is the limit of a decreasing sequence of bifurcation points. The paper deals with the study of the 2D bifurcated branches from the planar branch, for small k. Our technique is based on the elimination of the unknown front, turning the problem into a fully nonlinear...