Galerkin methods for nonlinear Sobolev equations.
Page 1 Next
Yanping Lin (1990)
Aequationes mathematicae
Jim Douglas, Todd Dupont (1972/1973)
Numerische Mathematik
Georgios Akrivis, Charalambos Makridakis (2004)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
We consider discontinuous as well as continuous Galerkin methods for the time discretization of a class of nonlinear parabolic equations. We show existence and local uniqueness and derive optimal order optimal regularity a priori error estimates. We establish the results in an abstract Hilbert space setting and apply them to a quasilinear parabolic equation.
Georgios Akrivis, Charalambos Makridakis (2010)
ESAIM: Mathematical Modelling and Numerical Analysis
We consider discontinuous as well as continuous Galerkin methods for the time discretization of a class of nonlinear parabolic equations. We show existence and local uniqueness and derive optimal order optimal regularity a priori error estimates. We establish the results in an abstract Hilbert space setting and apply them to a quasilinear parabolic equation.
Rudd, Matthew (2007)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Stakgold, Ivar (2000)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Henryk Leszczyński (1991)
Annales Polonici Mathematici
V.A. Galaktionov, J.L. Vazquez (1995)
Mathematische Annalen
Tan, Zhong, Yao, Zheng-An (2001)
Journal of Inequalities and Applications [electronic only]
Cung The Anh, Phan Quoc Hung, Tran Dinh Ke, Trinh Tuan Phong (2008)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Yanjiang Li, Zhongqing Yu, Yumei Huang (2024)
Czechoslovak Mathematical Journal
The self-consistent chemotaxis-fluid system is considered under no-flux boundary conditions for and the Dirichlet boundary condition for on a bounded smooth domain
A. Y. Khapalov (1999)
Revista Matemática Complutense
We discuss several global approximate controllability properties for the semilinear heat equation with superlinear reaction-convection term, governed in a bounded domain by locally distributed controls. First, based on the asymptotic analysis in vanishing time, we study the steering of the projections of its solution on any finite dimensional space spanned by the eigenfunctions for the truncated linear part. We show that, if the control-supporting area is properly chosen, then they can approximately...
Emmanuel Risler (2008)
Annales de l'I.H.P. Analyse non linéaire
You, Yuncheng (2011)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Aliziane, Tarik, Langlais, Michel (2005)
Electronic Journal of Qualitative Theory of Differential Equations [electronic only]
Joanna Rencławowicz (2000)
Applicationes Mathematicae
The Fujita type global existence and blow-up theorems are proved for a reaction-diffusion system of m equations (m>1) in the form
Cui, Zhoujin, Yang, Zuodong (2007)
International Journal of Mathematics and Mathematical Sciences
P. Collet, J. Xin (1996)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Stéphane Descombes, Mohand Moussaoui (2000)
Bollettino dell'Unione Matematica Italiana
Si considerano equazioni di Ginzburg-Landau complesse del tipo in dove è polinomio di grado a coefficienti complessi e è un numero complesso con parte reale positiva . Nell'ipotesi che la parte reale del coefficiente del termine di grado massimo sia positiva, si dimostra l'esistenza e la regolarità di una soluzione globale nel caso , dove dipende da e .
Mokhtar Kirane, Nasser-eddine Tatar (2000)
Archivum Mathematicum
We prove global existence and stability results for a semilinear parabolic equation, a semilinear functional equation and a semilinear integral equation using an inequality which may be viewed as a nonlinear singular version of the well known Gronwall and Bihari inequalities.
Page 1 Next