Computation of bifurcated branches in a free boundary problem arising in combustion theory
We consider a parabolic 2D Free Boundary Problem, with jump conditions at the interface. Its planar travelling-wave solutions are orbitally stable provided the bifurcation parameter does not exceed a critical value . The latter is the limit of a decreasing sequence of bifurcation points. The paper deals with the study of the 2D bifurcated branches from the planar branch, for small k. Our technique is based on the elimination of the unknown front, turning the problem into a fully nonlinear...
This paper deals with the numerical solution of nonlinear Black-Scholes equation modeling European vanilla call option pricing under transaction costs. Using an explicit finite difference scheme consistent with the partial differential equation valuation problem, a sufficient condition for the stability of the solution is given in terms of the stepsize discretization variables and the parameter measuring the transaction costs. This stability condition is linked to some properties of the numerical...
This paper concerns continuous dependence estimates for Hamilton-Jacobi-Bellman-Isaacs operators. We establish such an estimate for the parabolic Cauchy problem in the whole space [0, +∞) × ℝn and, under some periodicity and either ellipticity or controllability assumptions, we deduce a similar estimate for the ergodic constant associated to the operator. An interesting byproduct of the latter result will be the local uniform convergence for some classes of singular perturbation problems.
We consider the Cauchy problem for degenerate parabolic equations with variable coefficients. The equation has nonlinear convective term and degenerate diffusion term which depends on the spatial and time variables. In this paper, we prove the continuous dependence for entropy solutions in the space BV to the problem not only initial function but also all coefficients.
We consider a degenerate parabolic system which models the evolution of nematic liquid crystal with variable degree of orientation. The system is a slight modification to that proposed in [Calderer et al., SIAM J. Math. Anal.33 (2002) 1033–1047], which is a special case of Ericksen's general continuum model in [Ericksen, Arch. Ration. Mech. Anal.113 (1991) 97–120]. We prove the global existence of weak solutions by passing to the limit in a regularized system. Moreover, we propose a practical...
We study a Lagrangian numerical scheme for solution of a nonlinear drift diffusion equation on an interval. The discretization is based on the equation’s gradient flow structure with respect to the Wasserstein distance. The scheme inherits various properties from the continuous flow, like entropy monotonicity, mass preservation, metric contraction and minimum/ maximum principles. As the main result, we give a proof of convergence in the limit of vanishing mesh size under a CFL-type condition. We...
We prove that the entropy solutions of the so-called relativistic heat equation converge to solutions of the heat equation as the speed of light c tends to ∞ for any initial condition u0 ≥ 0 in L1(RN) ∩ L∞(RN).
A semidiscretization in time of a fourth order nonlinear parabolic system in several space dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential. Exploiting the stability of the discretization, convergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the solution, the rate of convergence proves to be optimal.
A semidiscretization in time of a fourth order nonlinear parabolic system in several space dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential. Exploiting the stability of the discretization, convergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the solution, the rate of convergence proves to be optimal.