Displaying 201 – 220 of 898

Showing per page

Counting number of cells and cell segmentation using advection-diffusion equations

Peter Frolkovič, Karol Mikula, Nadine Peyriéras, Alex Sarti (2007)

Kybernetika

We develop a method for counting number of cells and extraction of approximate cell centers in 2D and 3D images of early stages of the zebra-fish embryogenesis. The approximate cell centers give us the starting points for the subjective surface based cell segmentation. We move in the inner normal direction all level sets of nuclei and membranes images by a constant speed with slight regularization of this flow by the (mean) curvature. Such multi- scale evolutionary process is represented by a geometrical...

Curvature flows on surfaces

Michael Struwe (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Prompted by recent work of Xiuxiong Chen, a unified approach to the Hamilton-Ricci and Calabi flows on a closed, compact surface is presented, recovering global existence and exponentially fast asymptotic convergence from concentration-compactness results for conformal metrics.

Decay estimates for solutions of a class of parabolic problems arising in filtration through porous media

G. A. Philippin, S. Vernier-Piro (2001)

Bollettino dell'Unione Matematica Italiana

In questo lavoro si studia un problema di valori al contorno parabolico non lineare che si incontra nello studio dell'infiltrazione di un gas in un mezzo poroso. Si stabiliscono condizioni sui dati che determinano un comportamento di tipo esponenziale decrescente nel tempo per la soluzione e il suo gradiente. Si costruiscono inoltre stime esplicite.

Degenerating Cahn-Hilliard systems coupled with mechanical effects and complete damage processes

Christian Heinemann, Christiane Kraus (2014)

Mathematica Bohemica

This paper addresses analytical investigations of degenerating PDE systems for phase separation and damage processes considered on nonsmooth time-dependent domains with mixed boundary conditions for the displacement field. The evolution of the system is described by a degenerating Cahn-Hilliard equation for the concentration, a doubly nonlinear differential inclusion for the damage variable and a quasi-static balance equation for the displacement field. The analysis is performed on a time-dependent...

Difference methods for parabolic functional differential problems of the Neumann type

K. Kropielnicka (2007)

Annales Polonici Mathematici

Nonlinear parabolic functional differential equations with initial boundary conditions of the Neumann type are considered. A general class of difference methods for the problem is constructed. Theorems on the convergence of difference schemes and error estimates of approximate solutions are presented. The proof of the stability of the difference functional problem is based on a comparison technique. Nonlinear estimates of the Perron type with respect to the functional variable for given functions...

Differentiability of weak solutions of nonlinear second order parabolic systems with quadratic growth and nonlinearity q 2

Luisa Fattorusso (2004)

Commentationes Mathematicae Universitatis Carolinae

Let Ω be a bounded open subset of n , let X = ( x , t ) be a point of n × N . In the cylinder Q = Ω × ( - T , 0 ) , T > 0 , we deduce the local differentiability result u L 2 ( - a , 0 , H 2 ( B ( σ ) , N ) ) H 1 ( - a , 0 , L 2 ( B ( σ ) , N ) ) for the solutions u of the class L q ( - T , 0 , H 1 , q ( Ω , N ) ) C 0 , λ ( Q ¯ , N ) ( 0 < λ < 1 , N integer 1 ) of the nonlinear parabolic system - i = 1 n D i a i ( X , u , D u ) + u t = B 0 ( X , u , D u ) with quadratic growth and nonlinearity q 2 . This result had been obtained making use of the interpolation theory and an imbedding theorem of Gagliardo-Nirenberg type for functions u belonging to W 1 , q C 0 , λ .

Currently displaying 201 – 220 of 898