The porous medium equation as a finite-speed approximation to a Hamilton-Jacobi equation
We review the main mathematical questions posed in blow-up problems for reaction-diffusion equations and discuss results of the author and collaborators on the subjects of continuation of solutions after blow-up, existence of transient blow-up solutions (so-called peaking solutions) and avalanche formation as a mechanism of complete blow-up.
In this paper the existence of solution of a quasilinear generalized Kirchhoff equation with initial – boundary conditions of Dirichlet type will be studied using the Leray – Schauder principle.
This paper is devoted to some nonlinear propagation phenomena in periodic and more general domains, for reaction-diffusion equations with Kolmogorov–Petrovsky–Piskunov (KPP) type nonlinearities. The case of periodic domains with periodic underlying excitable media is a follow-up of the article [7]. It is proved that the minimal speed of pulsating fronts is given by a variational formula involving linear eigenvalue problems. Some consequences concerning the influence of the geometry of the domain,...
In this note we study the waiting time phenomenon for local solutions of the nonlinear diffusion equation through its connection with the nondiffusion of the support property for local solutions of the family of discretized elliptic problems. We show that, under a suitable growth condition on the initial datum near the boundary of its support, a finite part of the family of solutions of the discretized problem maintain unchanged its support.
We study a time-delay regularization of the anisotropic diffusion model for image denoising of Perona and Malik [IEEE Trans. Pattern Anal. Mach. Intell 12 (1990) 629–639], which has been proposed by Nitzberg and Shiota [IEEE Trans. Pattern Anal. Mach. Intell 14 (1998) 826–835]. In the two-dimensional case, we show the convergence of a numerical approximation and the existence of a weak solution. Finally, we show some experiments on images.
We study a time-delay regularization of the anisotropic diffusion model for image denoising of Perona and Malik [IEEE Trans. Pattern Anal. Mach. Intell12 (1990) 629–639], which has been proposed by Nitzberg and Shiota [IEEE Trans. Pattern Anal. Mach. Intell14 (1998) 826–835]. In the two-dimensional case, we show the convergence of a numerical approximation and the existence of a weak solution. Finally, we show some experiments on images.
A parabolic system arisng as a viscosity regularization of the quasilinear one-dimensional telegraph equation is considered. The existence of - a priori estimates, independent of viscosity, is shown. The results are achieved by means of generalized invariant regions.
We study boundary value problems for quasilinear parabolic equations when the initial condition is replaced by periodicity in the time variable. Our approach is to relate the theory of such problems to the classical theory for initial-boundary value problems. In the process, we generalize many previously known results.