Displaying 821 – 840 of 901

Showing per page

Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase

Giuseppe Savaré, Augusto Visintin (1997)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We study a variational formulation for a Stefan problem in two adjoining bodies, when the heat conductivity of one of them becomes infinitely large. We study the «concentrated capacity» model arising in the limit, and we justify it by an asymptotic analysis, which is developed in the general framework of the abstract evolution equations of monotone type.

Volume Filling Effect in Modelling Chemotaxis

D. Wrzosek (2010)

Mathematical Modelling of Natural Phenomena

The oriented movement of biological cells or organisms in response to a chemical gradient is called chemotaxis. The most interesting situation related to self-organization phenomenon takes place when the cells detect and response to a chemical which is secreted by themselves. Since pioneering works of Patlak (1953) and Keller and Segel (1970) many particularized models have been proposed to describe the aggregation phase of this process. Most of...

Vortex collisions and energy-dissipation rates in the Ginzburg–Landau heat flow. Part I: Study of the perturbed Ginzburg–Landau equation

Sylvia Serfaty (2007)

Journal of the European Mathematical Society

We study vortices for solutions of the perturbed Ginzburg–Landau equations Δ u + ( u / ε 2 ) ( 1 | u | 2 ) = f ε where f ε is estimated in L 2 . We prove upper bounds for the Ginzburg–Landau energy in terms of f ε L 2 , and obtain lower bounds for f ε L 2 in terms of the vortices when these form “unbalanced clusters” where i d i 2 ( i d i ) 2 . These results will serve in Part II of this paper to provide estimates on the energy-dissipation rates for solutions of the Ginzburg–Landau heat flow, which allow one to study various phenomena occurring in this flow, including...

Vortex motion and phase-vortex interaction in dissipative Ginzburg-Landau dynamics

F. Bethuel, G. Orlandi, D. Smets (2004)

Journées Équations aux dérivées partielles

We discuss the asymptotics of the parabolic Ginzburg-Landau equation in dimension N 2 . Our only asumption on the initial datum is a natural energy bound. Compared to the case of “well-prepared” initial datum, this induces possible new energy modes which we analyze, and in particular their mutual interaction. The two dimensional case is qualitatively different and requires a separate treatment.

Waves of Autocrine Signaling in Patterned Epithelia

C. B. Muratov, S. Y. Shvartsman (2010)

Mathematical Modelling of Natural Phenomena

A biophysical model describing long-range cell-to-cell communication by a diffusible signal mediated by autocrine loops in developing epithelia in the presence of a morphogenetic pre-pattern is introduced. Under a number of approximations, the model reduces to a particular kind of bistable reaction-diffusion equation with strong heterogeneity. In the case of the heterogeneity in the form of a long strip a detailed analysis of signal propagation is...

Weak- L p solutions for a model of self-gravitating particles with an external potential

Andrzej Raczyński (2007)

Studia Mathematica

The existence of solutions to a nonlinear parabolic equation describing the temporal evolution of a cloud of self-gravitating particles with a given external potential is studied in weak- L p spaces (i.e. Markiewicz spaces). The main goal is to prove the existence of global solutions and to study their large time behaviour.

Weak periodic solutions of the boundary value problem for nonlinear heat equation

Věnceslava Šťastnová, Svatopluk Fučík (1979)

Aplikace matematiky

The paper deals with the existence of periodic solutions of the boundary value problem for nonlinear heat equation, where various types of nonlinearities are considered. The proofs are based on the investigation of Liapunov-Schmidt bifurcation system via Leray-Schauder degree theory.

Weak Solutions for a Fourth Order Degenerate Parabolic Equation

Changchun Liu, Jinyong Guo (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

We consider an initial-boundary value problem for a fourth order degenerate parabolic equation. Under some assumptions on the initial value, we establish the existence of weak solutions by the discrete-time method. The asymptotic behavior and the finite speed of propagation of perturbations of solutions are also discussed.

Weak solutions to a time-dependent heat equation with nonlocal radiation boundary condition and arbitrary p -summable right-hand side

Pierre-Etienne Druet (2010)

Applications of Mathematics

We consider a model for transient conductive-radiative heat transfer in grey materials. Since the domain contains an enclosed cavity, nonlocal radiation boundary conditions for the conductive heat-flux are taken into account. We generalize known existence and uniqueness results to the practically relevant case of lower integrable heat-sources, and of nonsmooth interfaces. We obtain energy estimates that involve only the L p norm of the heat sources for exponents p close to one. Such estimates are...

Weighted energy-dissipation functionals for gradient flows

Alexander Mielke, Ulisse Stefanelli (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We investigate a global-in-time variational approach to abstract evolution by means of the weighted energy-dissipation functionals proposed by Mielke and Ortiz [ESAIM: COCV14 (2008) 494–516]. In particular, we focus on gradient flows in Hilbert spaces. The main result is the convergence of minimizers and approximate minimizers of these functionals to the unique solution of the gradient flow. Sharp convergence rates are provided and the convergence analysis is combined with time-discretization....

Weighted energy-dissipation functionals for gradient flows

Alexander Mielke, Ulisse Stefanelli (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We investigate a global-in-time variational approach to abstract evolution by means of the weighted energy-dissipation functionals proposed by Mielke and Ortiz [ESAIM: COCV14 (2008) 494–516]. In particular, we focus on gradient flows in Hilbert spaces. The main result is the convergence of minimizers and approximate minimizers of these functionals to the unique solution of the gradient flow. Sharp convergence rates are provided and the convergence analysis is combined with time-discretization....

Well-posedness of a thermo-mechanical model for shape memory alloys under tension

Pavel Krejčí, Ulisse Stefanelli (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a model of the full thermo-mechanical evolution of a shape memory body undergoing a uniaxial tensile stress. The well-posedness of the related quasi-static thermo-inelastic problem is addressed by means of hysteresis operators techniques. As a by-product, details on a time-discretization of the problem are provided.

Currently displaying 821 – 840 of 901