Displaying 301 – 320 of 336

Showing per page

Opposing flows in a one dimensional convection-diffusion problem

Eugene O’Riordan (2012)

Open Mathematics

In this paper, we examine a particular class of singularly perturbed convection-diffusion problems with a discontinuous coefficient of the convective term. The presence of a discontinuous convective coefficient generates a solution which mimics flow moving in opposing directions either side of some flow source. A particular transmission condition is imposed to ensure that the differential operator is stable. A piecewise-uniform Shishkin mesh is combined with a monotone finite difference operator...

Optimal boundary control for hyperdiffusion equation

Hanif Heidari, Alaeddin Malek (2010)

Kybernetika

In this paper, we consider the solution of optimal control problem for hyperdiffusion equation involving boundary function of continuous time variable in its cost function. A specific direct approach based on infinite series of Fourier expansion in space and temporal integration by parts for analytical solution is proposed to solve optimal boundary control for hyperdiffusion equation. The time domain is divided into number of finite subdomains and optimal function is estimated at each subdomain...

Optimal control and numerical adaptivity for advection–diffusion equations

Luca Dede', Alfio Quarteroni (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose a general approach for the numerical approximation of optimal control problems governed by a linear advection–diffusion equation, based on a stabilization method applied to the lagrangian functional, rather than stabilizing the state and adjoint equations separately. This approach yields a coherently stabilized control problem. Besides, it allows a straightforward a posteriori error estimate in which estimates of higher order terms are needless. Our a posteriori estimates stems from splitting...

Optimal control and numerical adaptivity for advection–diffusion equations

Luca Dede', Alfio Quarteroni (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose a general approach for the numerical approximation of optimal control problems governed by a linear advection–diffusion equation, based on a stabilization method applied to the Lagrangian functional, rather than stabilizing the state and adjoint equations separately. This approach yields a coherently stabilized control problem. Besides, it allows a straightforward a posteriori error estimate in which estimates of higher order terms are needless. Our a posteriori estimates stems from...

Optimal control for distributed systems subject to null-controllability. Application to discriminating sentinels

Ousseynou Nakoulima (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a distributed system in which the state q is governed by a parabolic equation and a pair of controls v = (h,k) where h and k play two different roles: the control k is of controllability type while h expresses that the state q does not move too far from a given state. Therefore, it is natural to introduce the control point of view. In fact, there are several ways to state and solve optimal control problems with a pair of controls h and k, in particular the Least Squares method...

Optimal control of a stochastic heat equation with boundary-noise and boundary-control

Arnaud Debussche, Marco Fuhrman, Gianmario Tessitore (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We are concerned with the optimal control of a nonlinear stochastic heat equation on a bounded real interval with Neumann boundary conditions. The specificity here is that both the control and the noise act on the boundary. We start by reformulating the state equation as an infinite dimensional stochastic evolution equation. The first main result of the paper is the proof of existence and uniqueness of a mild solution for the corresponding Hamilton-Jacobi-Bellman (HJB) equation. The C1 regularity...

Optimal control of nonlinear evolution equations associated with time-dependent subdifferentials and applications

Noriaki Yamazaki (2009)

Banach Center Publications

In this paper we consider optimal control problems for abstract nonlinear evolution equations associated with time-dependent subdifferentials in a real Hilbert space. We prove the existence of an optimal control that minimizes the nonlinear cost functional. Also, we study approximating control problems of our equations. Then, we show the relationship between the original optimal control problem and the approximating ones. Moreover, we give some applications of our abstract results.

Optimal Control of Semilinear Parabolic Equations with State-Constraints of Bottleneck Type

Maïtine Bergounioux, Fredi Tröltzsch (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider optimal distributed and boundary control problems for semilinear parabolic equations, where pointwise constraints on the control and pointwise mixed control-state constraints of bottleneck type are given. Our main result states the existence of regular Lagrange multipliers for the state-constraints. Under natural assumptions, we are able to show the existence of bounded and measurable Lagrange multipliers. The method is based on results from the theory of continuous linear programming...

Optimal control of systems determined by strongly nonlinear operator valued measures

N.U. Ahmed (2008)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we consider a class of distributed parameter systems (partial differential equations) determined by strongly nonlinear operator valued measures in the setting of the Gelfand triple V ↪ H ↪ V* with continuous and dense embeddings where H is a separable Hilbert space and V is a reflexive Banach space with dual V*. The system is given by dx + A(dt,x) = f(t,x)γ(dt) + B(t)u(dt), x(0) = ξ, t ∈ I ≡ [0,T] where A is a strongly nonlinear operator valued measure...

Optimal convergence and a posteriori error analysis of the original DG method for advection-reaction equations

Tie Zhu Zhang, Shu Hua Zhang (2015)

Applications of Mathematics

We consider the original DG method for solving the advection-reaction equations with arbitrary velocity in d space dimensions. For triangulations satisfying the flow condition, we first prove that the optimal convergence rate is of order k + 1 in the L 2 -norm if the method uses polynomials of order k . Then, a very simple derivative recovery formula is given to produce an approximation to the derivative in the flow direction which superconverges with order k + 1 . Further we consider a residual-based a posteriori...

Optimal feedback control of Ginzburg-Landau equation for superconductivity via differential inclusion

Yuncheng You (1996)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Slightly below the transition temperatures, the behavior of superconducting materials is governed by the Ginzburg-Landau (GL) equation which characterizes the dynamical interaction of the density of superconducting electron pairs and the exited electromagnetic potential. In this paper, an optimal control problem of the strength of external magnetic field for one-dimensional thin film superconductors with respect to a convex criterion functional is considered. It is formulated as a nonlinear coefficient...

Currently displaying 301 – 320 of 336