The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 17

Displaying 321 – 336 of 336

Showing per page

Optimal regularity for one-dimensional porous medium flow.

Donald G. Aronson, Luis A. Caffarelli (1986)

Revista Matemática Iberoamericana

We give a new proof of the Lipschitz continuity with respect to t of the pressure in a one dimensional porous medium flow. As is shown by the Barenblatt solution, this is the optimal t-regularity for the pressure. Our proof is based on the existence and properties of a certain selfsimilar solution.

Optimal time and space regularity for solutions of degenerate differential equations

Alberto Favaron (2009)

Open Mathematics

We derive optimal regularity, in both time and space, for solutions of the Cauchy problem related to a degenerate differential equation in a Banach space X. Our results exhibit a sort of prevalence for space regularity, in the sense that the higher is the order of regularity with respect to space, the lower is the corresponding order of regularity with respect to time.

Origins, analysis, numerical analysis, and numerical approximation of a forward-backward parabolic problem

A. Kadir Aziz, Donald A. French, Soren Jensen, R. Bruce Kellogg (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the analysis and numerical solution of a forward-backward boundary value problem. We provide some motivation, prove existence and uniqueness in a function class especially geared to the problem at hand, provide various energy estimates, prove a priori error estimates for the Galerkin method, and show the results of some numerical computations.

Oscillation properties for parabolic equations of neutral type

Bao Tong Cui (1992)

Commentationes Mathematicae Universitatis Carolinae

The oscillation of the solutions of linear parabolic differential equations with deviating arguments are studied and sufficient conditions that all solutions of boundary value problems are oscillatory in a cylindrical domain are given.

Currently displaying 321 – 336 of 336

Previous Page 17