Anisotropic motion of a phase interface.
We consider an abstract parabolic problem in a framework of maximal monotone graphs, possibly multi-valued, with growth conditions formulated with the help of an x-dependent N-function. The main novelty of the paper consists in the lack of any growth restrictions on the N-function combined with its anisotropic character, namely we allow the dependence on all the directions of the gradient, not only on its absolute value. This leads to using the notion of modular convergence and studying in detail...
In this paper we deal with the anti-periodic boundary value problems with nonlinearity of the form , where Extending to be multivalued we obtain the existence of solutions to hemivariational inequality and variational-hemivariational inequality.
Unidirectional motion along an annular water channel can be observed in an experiment even with only one camphor disk or boat. Moreover, the collective motion of camphor disks or boats in the water channel exhibits a homogeneous and an inhomogeneous state, depending on the number of disks or boats, which looks like a kind of bifurcation phenomena. In a theoretical research, the unidirectional motion is represented by a traveling wave solution in a model. Hence it suffices to investigate a linearized...
In specific fields of research such as preservation of historical buildings, medical imaging, geophysics and others, it is of particular interest to perform only a non-intrusive boundary measurements. The idea is to obtain comprehensive information about the material properties inside the considered domain while keeping the test sample intact. This paper is focused on such problems, i.e. synthesizing a physical model of interest with a boundary inverse value technique. The forward model is represented...
In this paper we are concerned with the solution of degenerate variational inequalities. To solve this problem numerically, we propose a numerical scheme which is based on the relaxation scheme using non-standard time discretization. The approximate solution on each time level is obtained in the iterative way by solving the corresponding elliptic variational inequalities. The convergence of the method is proved.
We consider an inverse problem for the determination of a purely time-dependent source in a semilinear parabolic equation with a nonlocal boundary condition. An approximation scheme for the solution together with the well-posedness of the problem with the initial value is presented by means of the Rothe time-discretization method. Further approximation scheme via Rothe’s method is constructed for the problem when and the integral kernel in the nonlocal boundary condition is symmetric.
In this paper we study a class of abstract quasi-variational inequalities with nonlocal constraints depending on the unknown and establish an existence result. Further we give its applications to parabolic systems of partial differential inequalities with nonlocal obstacles depending on the unknowns.