Approximations of solutions to nonlinear Sobolev type evolution equations.
We propose a new formulation of the 3D Boltzmann non linear operator, without assuming Grad's angular cutoff hypothesis, and for intermolecular laws behaving as 1/rs, with s> 2. It involves natural pseudo differential operators, under a form which is analogous to the Landau operator. It may be used in the study of the associated equations, and more precisely in the non homogeneous framework.
We show that nonnegative solutions of either converge to zero, blow up in -norm, or converge to the ground state when , where the latter case is a threshold phenomenon when varies. The proof is based on the fact that any bounded trajectory converges to a stationary solution. The function is typically nonlinear but has a sublinear growth at infinity. We also show that for superlinear it can happen that solutions converge to zero for any , provided is sufficiently small.
Our aim in this paper is to study the asymptotic behavior, in terms of finite-dimensional attractors, of a sixth-order Cahn-Hilliard system. This system is based on a modification of the Ginzburg-Landau free energy proposed in [Torabi S., Lowengrub J., Voigt A., Wise S., A new phase-field model for strongly anisotropic systems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2009, 465(2105), 1337–1359], assuming isotropy.
We consider the Keller-Segel-Navier-Stokes system which is considered in bounded domain