The search session has expired. Please query the service again.

Displaying 441 – 460 of 491

Showing per page

Asymptotic behavior of the numerical solutions of time-delayed reaction diffusion equations with non-monotone reaction term

Yuan-Ming Wang (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is concerned with the asymptotic behavior of the finite difference solutions of a class of nonlinear reaction diffusion equations with time delay. By introducing a pair of coupled upper and lower solutions, an existence result of the solution is given and an attractor of the solution is obtained without monotonicity assumptions on the nonlinear reaction function. This attractor is a sector between two coupled quasi-solutions of the corresponding “steady-state” problem, which are obtained...

Asymptotic behavior of the numerical solutions of time-delayed reaction diffusion equations with non-monotone reaction term

Yuan-Ming Wang (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the asymptotic behavior of the finite difference solutions of a class of nonlinear reaction diffusion equations with time delay. By introducing a pair of coupled upper and lower solutions, an existence result of the solution is given and an attractor of the solution is obtained without monotonicity assumptions on the nonlinear reaction function. This attractor is a sector between two coupled quasi-solutions of the corresponding “steady-state" problem, which are...

Asymptotic Behavior of the Solution of the Distribution Diffusion Equation for FENE Dumbbell Polymer Model

I. S. Ciuperca, L. I. Palade (2011)

Mathematical Modelling of Natural Phenomena

This paper deals with the evolution Fokker-Planck-Smoluchowski configurational probability diffusion equation for the FENE dumbbell model in dilute polymer solutions. We prove the exponential convergence in time of the solution of this equation to a corresponding steady-state solution, for arbitrary velocity gradients.

Asymptotic behaviour for a phase-field model with hysteresis in one-dimensional thermo-visco-plasticity

Olaf Klein (2004)

Applications of Mathematics

The asymptotic behaviour for t of the solutions to a one-dimensional model for thermo-visco-plastic behaviour is investigated in this paper. The model consists of a coupled system of nonlinear partial differential equations, representing the equation of motion, the balance of the internal energy, and a phase evolution equation, determining the evolution of a phase variable. The phase evolution equation can be used to deal with relaxation processes. Rate-independent hysteresis effects in the strain-stress...

Asymptotic behaviour of a class of degenerate elliptic-parabolic operators: a unitary approach

Fabio Paronetto (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We study the asymptotic behaviour of a sequence of strongly degenerate parabolic equations t ( r h u ) - div ( a h · D u ) with r h ( x , t ) 0 , r h L ( Ω × ( 0 , T ) ) . The main problem is the lack of compactness, by-passed via a regularity result. As particular cases, we obtain G-convergence for elliptic operators ( r h 0 ) , G-convergence for parabolic operators ( r h 1 ) , singular perturbations of an elliptic operator ( a h a and r h r , possibly r 0 ) .

Asymptotic behaviour of stochastic quasi dissipative systems

Giuseppe Da Prato (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We prove uniqueness of the invariant measure and the exponential convergence to equilibrium for a stochastic dissipative system whose drift is perturbed by a bounded function.

Asymptotic behaviour of stochastic quasi dissipative systems

Giuseppe Da Prato (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We prove uniqueness of the invariant measure and the exponential convergence to equilibrium for a stochastic dissipative system whose drift is perturbed by a bounded function.

Currently displaying 441 – 460 of 491