Boundary control theory for hyperbolic and parabolic partial differential equations with constant coefficients
We study the boundary behavior of non-negative solutions to a class of degenerate/singular parabolic equations, whose prototype is the parabolic -Laplacian equation. Assuming that such solutions continuously vanish on some distinguished part of the lateral part of a Lipschitz cylinder, we prove Carleson-type estimates, and deduce some consequences under additional assumptions on the equation or the domain. We then prove analogous estimates for non-negative solutions to a class of degenerate/singular...
We deal with boundary layers and quasi-neutral limits in the drift-diffusion equations. We first show that this limit is unique and determined by a system of two decoupled equations with given initial and boundary conditions. Then we establish the boundary layer equations and prove the existence and uniqueness of solutions with exponential decay. This yields a globally strong convergence (with respect to the domain) of the sequence of solutions and an optimal convergence rate to the quasi-neutral...
We deal with boundary layers and quasi-neutral limits in the drift-diffusion equations. We first show that this limit is unique and determined by a system of two decoupled equations with given initial and boundary conditions. Then we establish the boundary layer equations and prove the existence and uniqueness of solutions with exponential decay. This yields a globally strong convergence (with respect to the domain) of the sequence of solutions and an optimal convergence rate to the quasi-neutral...
We develop a new method for proving the existence of a boundary trace, in the class of Borel measures, of nonnegative solutions of in a smooth domain under very general assumptions on . This new definition which extends the previous notions of boundary trace is based upon a sweeping technique by solutions of Dirichlet problems with measure boundary data. We also prove a boundary pointwise blow-up estimate of any solution of such inequalities in terms of the Poisson kernel. If the nonlinearity...
In this paper we consider general second order, symmetric and strongly elliptic parabolic systems with real valued and constant coefficients in the setting of a class of time-varying, non-smooth infinite cylindersΩ = {(x0,x,t) ∈ R x Rn-1 x R: x0 > A(x,t)}.We prove solvability of Dirichlet, Neumann as well as regularity type problems with data in Lp and Lp1,1/2 (the parabolic Sobolev space having tangential (spatial) gradients and half a time derivative in Lp) for p ∈ (2 − ε, 2 + ε) assuming...