Displaying 861 – 880 of 3302

Showing per page

Entropy solution for anisotropic reaction-diffusion-advection systems with L1 data.

Mostafa Bendahmane, Mazen Saad (2005)

Revista Matemática Complutense

In this paper, we study the question of existence and uniqueness of entropy solutions for a system of nonlinear partial differential equations with general anisotropic diffusivity and transport effects, supplemented with no-flux boundary conditions, modeling the spread of an epidemic disease through a heterogeneous habitat.

Entropy solutions for nonlinear unilateral parabolic inequalities in Orlicz-Sobolev spaces

Azeddine Aissaoui Fqayeh, Abdelmoujib Benkirane, Mostafa El Moumni (2014)

Applicationes Mathematicae

We discuss the existence of entropy solution for the strongly nonlinear unilateral parabolic inequalities associated to the nonlinear parabolic equations ∂u/∂t - div(a(x,t,u,∇u) + Φ(u)) + g(u)M(|∇u|) = μ in Q, in the framework of Orlicz-Sobolev spaces without any restriction on the N-function of the Orlicz spaces, where -div(a(x,t,u,∇u)) is a Leray-Lions operator and Φ C ( , N ) . The function g(u)M(|∇u|) is a nonlinear lower order term with natural growth with respect to |∇u|, without satisfying the sign...

Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes

Martin Vohralík (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the lowest-order Raviart–Thomas mixed finite element method for second-order elliptic problems on simplicial meshes in two and three space dimensions. This method produces saddle-point problems for scalar and flux unknowns. We show how to easily and locally eliminate the flux unknowns, which implies the equivalence between this method and a particular multi-point finite volume scheme, without any approximate numerical integration. The matrix of the final linear system is sparse, positive...

Ergodic behaviour of stochastic parabolic equations

Jan Seidler (1997)

Czechoslovak Mathematical Journal

The ergodic behaviour of homogeneous strong Feller irreducible Markov processes in Banach spaces is studied; in particular, existence and uniqueness of finite and σ -finite invariant measures are considered. The results obtained are applied to solutions of stochastic parabolic equations.

Currently displaying 861 – 880 of 3302