Distribution near the real axis of scattering poles generated by a non-hyperbolic periodic ray
The idea of replacing a divergence constraint by a divergence boundary condition is investigated. The connections between the formulations are considered in detail. It is shown that the most common methods of using divergence boundary conditions do not always work properly. Necessary and sufficient conditions for the equivalence of the formulations are given.
The use of parallel computers makes it feasible to simulate elastic waves throughout large heterogeneous structures, and new domain decomposition methods can be used to increase their efficiency and decrease the computing time spent in the simulation. In this paper we introduce a simple parallel algorithm for the propagation of elastic waves in complex heterogeneous media after a finite element discretization. This method performs more efficiently than classic domain decomposition techniques based...
This work concerns an enlarged analysis of the problem of asymptotic compensation for a class of discrete linear distributed systems. We study the possibility of asymptotic compensation of a disturbance by bringing asymptotically the observation in a given tolerance zone 𝒞. Under convenient hypothesis, we show the existence and the unicity of the optimal control ensuring this compensation and we give its characterization
On étudie la position des pôles de diffusion du problème de Dirichlet pour l’équation des ondes amorties du type dans un domaine extérieur. Sous la condition du « contrôle géométrique extérieur », on déduit alors le comportement des solutions en grand temps. On calcule en particulier le meilleur taux de décroissance de l’énergie locale en dimension impaire d’espace.
Galerkin reduced-order models for the semi-discrete wave equation, that preserve the second-order structure, are studied. Error bounds for the full state variables are derived in the continuous setting (when the whole trajectory is known) and in the discrete setting when the Newmark average-acceleration scheme is used on the second-order semi-discrete equation. When the approximating subspace is constructed using the proper orthogonal decomposition, the error estimates are proportional to the sums...
A model representing the vibrations of a fluid-solid coupled structure is considered. Following Hilbert Uniqueness Method (HUM) introduced by Lions, we establish exact controllability results for this model with an internal control in the fluid part and there is no control in the solid part. Novel features which arise because of the coupling are pointed out. It is a source of difficulty in the proof of observability inequalities, definition of weak solutions and the proof of controllability...