Displaying 201 – 220 of 248

Showing per page

Uniform stabilization of a viscous numerical approximation for a locally damped wave equation

Arnaud Münch, Ademir Fernando Pazoto (2007)

ESAIM: Control, Optimisation and Calculus of Variations

This work is devoted to the analysis of a viscous finite-difference space semi-discretization of a locally damped wave equation in a regular 2-D domain. The damping term is supported in a suitable subset of the domain, so that the energy of solutions of the damped continuous wave equation decays exponentially to zero as time goes to infinity. Using discrete multiplier techniques, we prove that adding a suitable vanishing numerical viscosity term leads to a uniform (with respect to the mesh size)...

Uniformly exponentially or polynomially stable approximations for second order evolution equations and some applications

Farah Abdallah, Serge Nicaise, Julie Valein, Ali Wehbe (2013)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider the approximation of second order evolution equations. It is well known that the approximated system by finite element or finite difference is not uniformly exponentially or polynomially stable with respect to the discretization parameter, even if the continuous system has this property. Our goal is to damp the spurious high frequency modes by introducing numerical viscosity terms in the approximation scheme. With these viscosity terms, we show the exponential or polynomial...

Unique continuation for the solutions of the laplacian plus a drift

Alberto Ruiz, Luis Vega (1991)

Annales de l'institut Fourier

We prove unique continuation for solutions of the inequality | Δ u ( x ) | V ( x ) | u ( x ) | , x Ω a connected set contained in R n and V is in the Morrey spaces F α , p , with p ( n - 2 ) / 2 ( 1 - α ) and α < 1 . These spaces include L q for q ( 3 n - 2 ) / 2 (see [H], [BKRS]). If p = ( n - 2 ) / 2 ( 1 - α ) , the extra assumption of V being small enough is needed.

Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: the nonradial case

Thomas Duyckaerts, Carlos E. Kenig, Frank Merle (2012)

Journal of the European Mathematical Society

Following our previous paper in the radial case, we consider type II blow-up solutions to the energy-critical focusing wave equation. Let W be the unique radial positive stationary solution of the equation. Up to the symmetries of the equation, under an appropriate smallness assumption, any type II blow-up solution is asymptotically a regular solution plus a rescaled Lorentz transform of W concentrating at the origin.

[unknown]

Н.Х. Ибрагимов, Е.В. Мамонтов (1977)

Matematiceskij sbornik

Wave Equation with Slowly Decaying Potential: asymptotics of Solution and Wave Operators

S. A. Denisov (2010)

Mathematical Modelling of Natural Phenomena

In this paper, we consider one-dimensional wave equation with real-valued square-summable potential. We establish the long-time asymptotics of solutions by, first, studying the stationary problem and, second, using the spectral representation for the evolution equation. In particular, we prove that part of the wave travels ballistically if q ∈ L2(ℝ+) and this result is sharp.

Weak solvability and numerical analysis of a class of time-fractional hemivariational inequalities with application to frictional contact problems

Mustapha Bouallala (2024)

Applications of Mathematics

We investigate a generalized class of fractional hemivariational inequalities involving the time-fractional aspect. The existence result is established by employing the Rothe method in conjunction with the surjectivity of multivalued pseudomonotone operators and the properties of the Clarke generalized gradient. We are also exploring a numerical approach to address the problem, utilizing both spatially semi-discrete and fully discrete finite elements, along with a discrete approximation of the fractional...

Weakly hyperbolic equations of second order well-posed in some Gevrey classes

Enrico Jannelli (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

L’equazione u t t = i j = 1 n ( a i j ( x , t ) u x j ) x i in condizioni di debole iperbolicità ( i j = 1 n a i j ( x , t ) ξ i ξ j 0 ) , è ben posta negli spazi di Gevrey γ l o c ( s ) con 1 s < 1 + σ 2 , purché a i j sia di Gevrey in x di ordine s e risulti [ i j = 1 n a i j ( x , t ) ξ i ξ j ] 1 / σ B V ( [ 0 , T ] : 𝐋 l o c )

Currently displaying 201 – 220 of 248