Initial value problems in elasticity
We discuss invariants and conservation laws for a nonlinear system of Klein-Gordon equations with Hamiltonian structure ⎧, ⎨ ⎩ for which there exists a function F(λ,μ) such that ∂F(λ,μ)/∂λ = F₁(λ,μ), ∂F(λ,μ)/∂μ = F₂(λ,μ). Based on Morawetz-type identity, we prove that solutions to the above system decay to zero in local L²-norm, and local energy also decays to zero if the initial energy satisfies , and F₁(|u|²,|v|²)|u|² + F₂(|u|²,|v|²)|v|² - F(|u|²,|v|²) ≥ aF(|u|²,|v|²) ≥ 0, a > 0.
This work is concerned with the proof of decay estimates for solutions of the Cauchy problem for the Klein-Gordon type equation . The coefficient consists of an increasing smooth function and an oscillating smooth and bounded function b which are uniformly separated from zero. Moreover, is a positive constant. We study under which assumptions for λ and b one can expect as an essential part of the decay rate the classical Klein-Gordon decay rate n/2(1/p-1/q).
We prove the --time decay estimates for the solution of the Cauchy problem for the hyperbolic system of partial differential equations of linear thermoelasticity. In our proof based on the matrix of fundamental solutions to the system we use Strauss-Klainerman’s approach [12], [5] to the --time decay estimates.
2000 Mathematics Subject Classification: 35B40, 35L15.We obtain local energy decay as well as global Strichartz estimates for the solutions u of the wave equation ∂t2 u-divx(a(t,x)∇xu) = 0, t ∈ R, x ∈ Rn, with time-periodic non-trapping metric a(t,x) equal to 1 outside a compact set with respect to x. We suppose that the cut-off resolvent Rχ(θ) = χ(U(T, 0)− e−iθ)−1χ, where U(T, 0) is the monodromy operator and T the period of a(t,x), admits an holomorphic continuation to {θ ∈ C : Im(θ) ≥ 0}, for...
In this paper we prove a local existence theorem for a Cauchy problem associated to a semi linear wave equation with an exponential nonlinearity in two dimension space. In this problem, the first Cauchy data is equal to zero, the second is in , radially symmetric and compactly supported. To prove this theorem, we first show a Moser-Trudinger type inequality for the linear problem and then we use a fixed point method to achieve the proof of the result.
We give sufficient conditions for the existence of global small solutions to the quasilinear dissipative hyperbolic equation corresponding to initial values and source terms of sufficiently small size, as well as of small solutions to the corresponding stationary version, i.e. the quasilinear elliptic equation We then give conditions for the convergence, as , of the solution of the evolution equation to its stationary state.
We consider the systems of hyperbolic equations ⎧, t > 0, , (S1) ⎨ ⎩, t > 0, ⎧, t > 0, , (S2) ⎨ ⎩, t > 0, , (S3) ⎧, t > 0, , ⎨ ⎩, t > 0, , in with u(0,x) = u₀(x), v(0,x) = v₀(x), uₜ(0,x) = u₁(x), vₜ(0,x) = v₁(x). We show that, in each case, there exists a bound B on N such that for 1 ≤ N ≤ B solutions to the systems blow up in finite time.