Displaying 81 – 100 of 248

Showing per page

Invariants, conservation laws and time decay for a nonlinear system of Klein-Gordon equations with Hamiltonian structure

Changxing Miao, Youbin Zhu (2006)

Applicationes Mathematicae

We discuss invariants and conservation laws for a nonlinear system of Klein-Gordon equations with Hamiltonian structure ⎧ u t t - Δ u + m ² u = - F ( | u | ² , | v | ² ) u , ⎨ ⎩ v t t - Δ v + m ² v = - F ( | u | ² , | v | ² ) v for which there exists a function F(λ,μ) such that ∂F(λ,μ)/∂λ = F₁(λ,μ), ∂F(λ,μ)/∂μ = F₂(λ,μ). Based on Morawetz-type identity, we prove that solutions to the above system decay to zero in local L²-norm, and local energy also decays to zero if the initial energy satisfies E ( u , v , , 0 ) = 1 / 2 ( | u ( 0 ) | ² + | u t ( 0 ) | ² + m ² | u ( 0 ) | ² + | v ( 0 ) | ² + | v t ( 0 ) | ² + m ² | v ( 0 ) | ² + F ( | u ( 0 ) | ² , | v ( 0 ) | ² ) ) d x < , and F₁(|u|²,|v|²)|u|² + F₂(|u|²,|v|²)|v|² - F(|u|²,|v|²) ≥ aF(|u|²,|v|²) ≥ 0, a > 0.

Klein-Gordon type decay rates for wave equations with time-dependent coefficients

Michael Reissig, Karen Yagdjian (2000)

Banach Center Publications

This work is concerned with the proof of L p - L q decay estimates for solutions of the Cauchy problem for the Klein-Gordon type equation u t t - λ 2 ( t ) b 2 ( t ) ( Δ u - m 2 u ) = 0 . The coefficient consists of an increasing smooth function λ and an oscillating smooth and bounded function b which are uniformly separated from zero. Moreover, m 2 is a positive constant. We study under which assumptions for λ and b one can expect as an essential part of the decay rate the classical Klein-Gordon decay rate n/2(1/p-1/q).

L p - L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity

Jerzy Gawinecki (1991)

Annales Polonici Mathematici

We prove the L p - L q -time decay estimates for the solution of the Cauchy problem for the hyperbolic system of partial differential equations of linear thermoelasticity. In our proof based on the matrix of fundamental solutions to the system we use Strauss-Klainerman’s approach [12], [5] to the L p - L q -time decay estimates.

Local Energy Decay in Even Dimensions for the Wave Equation with a Time-Periodic Non-Trapping Metric and Applications to Strichartz Estimates

Kian, Yavar (2010)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 35B40, 35L15.We obtain local energy decay as well as global Strichartz estimates for the solutions u of the wave equation ∂t2 u-divx(a(t,x)∇xu) = 0, t ∈ R, x ∈ Rn, with time-periodic non-trapping metric a(t,x) equal to 1 outside a compact set with respect to x. We suppose that the cut-off resolvent Rχ(θ) = χ(U(T, 0)− e−iθ)−1χ, where U(T, 0) is the monodromy operator and T the period of a(t,x), admits an holomorphic continuation to {θ ∈ C : Im(θ) ≥ 0}, for...

Local existence and estimations for a semilinear wave equation in two dimension space

Amel Atallah Baraket (2004)

Bollettino dell'Unione Matematica Italiana

In this paper we prove a local existence theorem for a Cauchy problem associated to a semi linear wave equation with an exponential nonlinearity in two dimension space. In this problem, the first Cauchy data is equal to zero, the second is in L 2 R 2 , radially symmetric and compactly supported. To prove this theorem, we first show a Moser-Trudinger type inequality for the linear problem and then we use a fixed point method to achieve the proof of the result.

Long-time behavior of small solutions to quasilinear dissipative hyperbolic equations

Albert J. Milani, Hans Volkmer (2011)

Applications of Mathematics

We give sufficient conditions for the existence of global small solutions to the quasilinear dissipative hyperbolic equation u t t + 2 u t - a i j ( u t , u ) i j u = f corresponding to initial values and source terms of sufficiently small size, as well as of small solutions to the corresponding stationary version, i.e. the quasilinear elliptic equation - a i j ( 0 , v ) i j v = h . We then give conditions for the convergence, as t , of the solution of the evolution equation to its stationary state.

Nonexistence results for the Cauchy problem of some systems of hyperbolic equations

Mokhtar Kirane, Salim Messaoudi (2002)

Annales Polonici Mathematici

We consider the systems of hyperbolic equations ⎧ u = Δ ( a ( t , x ) u ) + Δ ( b ( t , x ) v ) + h ( t , x ) | v | p , t > 0, x N , (S1) ⎨ ⎩ v = Δ ( c ( t , x ) v ) + k ( t , x ) | u | q , t > 0, x N u = Δ ( a ( t , x ) u ) + h ( t , x ) | v | p , t > 0, x N , (S2) ⎨ ⎩ v = Δ ( c ( t , x ) v ) + l ( t , x ) | v | m + k ( t , x ) | u | q , t > 0, x N , (S3) ⎧ u = Δ ( a ( t , x ) u ) + Δ ( b ( t , x ) v ) + h ( t , x ) | u | p , t > 0, x N , ⎨ ⎩ v = Δ ( c ( t , x ) v ) + k ( t , x ) | v | q , t > 0, x N , in ( 0 , ) × N with u(0,x) = u₀(x), v(0,x) = v₀(x), uₜ(0,x) = u₁(x), vₜ(0,x) = v₁(x). We show that, in each case, there exists a bound B on N such that for 1 ≤ N ≤ B solutions to the systems blow up in finite time.

Currently displaying 81 – 100 of 248