Displaying 221 – 240 of 310

Showing per page

Regularity in kinetic formulations via averaging lemmas

Pierre-Emmanuel Jabin, Benoît Perthame (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We present a new class of averaging lemmas directly motivated by the question of regularity for different nonlinear equations or variational problems which admit a kinetic formulation. In particular they improve the known regularity for systems like γ = 3 in isentropic gas dynamics or in some variational problems arising in thin micromagnetic films. They also allow to obtain directly the best known regularizing effect in multidimensional scalar conservation laws. The new ingredient here is to use velocity...

Regularity in kinetic formulations via averaging lemmas

Pierre-Emmanuel Jabin, Benoît Perthame (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We present a new class of averaging lemmas directly motivated by the question of regularity for different nonlinear equations or variational problems which admit a kinetic formulation. In particular they improve the known regularity for systems like γ = 3 in isentropic gas dynamics or in some variational problems arising in thin micromagnetic films. They also allow to obtain directly the best known regularizing effect in multidimensional scalar conservation laws. The new ingredient here is to...

Second-order MUSCL schemes based on Dual Mesh Gradient Reconstruction (DMGR)

Christophe Berthon, Yves Coudière, Vivien Desveaux (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We discuss new MUSCL reconstructions to approximate the solutions of hyperbolic systems of conservations laws on 2D unstructured meshes. To address such an issue, we write two MUSCL schemes on two overlapping meshes. A gradient reconstruction procedure is next defined by involving both approximations coming from each MUSCL scheme. This process increases the number of numerical unknowns, but it allows to reconstruct very accurate gradients. Moreover a particular attention is paid on the limitation...

Singular Perturbations for a Class of Degenerate Parabolic Equations with Mixed Dirichlet-Neumann Boundary Conditions

Marie-Josée Jasor, Laurent Lévi (2003)

Annales mathématiques Blaise Pascal

We establish a singular perturbation property for a class of quasilinear parabolic degenerate equations associated with a mixed Dirichlet-Neumann boundary condition in a bounded domain of p , 1 p < + . In order to prove the L 1 -convergence of viscous solutions toward the entropy solution of the corresponding first-order hyperbolic problem, we refer to some properties of bounded sequences in L together with a weak formulation of boundary conditions for scalar conservation laws.

Singular solutions to systems of conservation laws and their algebraic aspects

V. M. Shelkovich* (2010)

Banach Center Publications

We discuss the definitions of singular solutions (in the form of integral identities) to systems of conservation laws such as shocks, δ-, δ’-, and δ ( n ) -shocks (n = 2,3,...). Using these definitions, the Rankine-Hugoniot conditions for δ- and δ’-shocks are derived. The weak asymptotics method for the solution of the Cauchy problems admitting δ- and δ’-shocks is briefly described. The algebraic aspects of such singular solutions are studied. Namely, explicit formulas for flux-functions of singular solutions...

Sistemi iperbolici di leggi di conservazione

Alberto Bressan (2000)

Bollettino dell'Unione Matematica Italiana

This survey paper provides a brief introduction to the mathematical theory of hyperbolic systems of conservation laws in one space dimension. After reviewing some basic concepts, we describe the fundamental theorem of Glimm on the global existence of BV solutions. We then outline the more recent results on uniqueness and stability of entropy weak solutions. Finally, some major open problems and research directions are discussed in the last section.

Solutions classiques globales des équations d'Euler pour un fluide parfait compressible

Denis Serre (1997)

Annales de l'institut Fourier

Soit ρ , u , e , S et p les variables usuelles qui décrivent l’état d’un fluide en coordonnées eulériennes. Le domaine physique occupé par le fluide est a priori d tout entier, mais ρ peut être nul en dehors d’un compact K ( t ) . On choisit l’équation d’état d’un gaz parfait, p = ( γ - 1 ) ρ e , où γ [ 1 , 1 + 2 / d ] est une constante. Le cas γ = 1 + 2 / d est celui du gaz mono-atomique.Dans la limite ρ 0 , les collisions sont rares et on est tenté d’approcher le mouvement des particules par un mouvement rectiligne uniforme : le champ de vitesse obéit alors...

Currently displaying 221 – 240 of 310