Displaying 21 – 40 of 49

Showing per page

Méthodes géométriques dans l’étude des équations d’Einstein

Serge Alinhac (2003/2004)

Séminaire Bourbaki

L’étude de l’équation des ondes et de ses perturbations a montré l’importance d’un certain nombre d’objets géométriques, tels que les cônes sortants et rentrants, les champs de Lorentz, des repères isotropes adaptés, etc. Parmi les systèmes d’équations hyperboliques non linéaires, les équations d’Einstein jouent un rôle central ; leur étude a nécessité, dans le cas d’un espace-temps courbe, la construction d’objets analogues à ceux du cas plat, cônes, repères adaptés, etc. La construction de ces...

Microlocal analysis and seismic imaging

Christiaan Stolk (2003/2004)

Séminaire Équations aux dérivées partielles

We study certain Fourier integral operators arising in the inversion of data from reflection seismology.

Minimal surfaces in pseudohermitian geometry

Jih-Hsin Cheng, Jenn-Fang Hwang, Andrea Malchiodi, Paul Yang (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider surfaces immersed in three-dimensional pseudohermitian manifolds. We define the notion of (p-)mean curvature and of the associated (p-)minimal surfaces, extending some concepts previously given for the (flat) Heisenberg group. We interpret the p-mean curvature not only as the tangential sublaplacian of a defining function, but also as the curvature of a characteristic curve, and as a quantity in terms of calibration geometry. As a differential equation, the p-minimal surface equation...

Model of pulverized coal combustion in a furnace

Robert Straka, Jindřich Makovička (2007)

Kybernetika

We describe behavior of the air-coal mixture using the Navier–Stokes equations for gas and particle phases, accompanied by a turbulence model. The undergoing chemical reactions are described by the Arrhenian kinetics (reaction rate proportional to exp - E R T , where T is temperature). We also consider the heat transfer via conduction and radiation. Moreover we use improved turbulence-chemistry interactions for reaction terms. The system of PDEs is discretized using the finite volume method (FVM) and an advection...

Modeling of vibration for functionally graded beams

Gülsemay Yiğit, Ali Şahin, Mustafa Bayram (2016)

Open Mathematics

In this study, a vibration problem of Euler-Bernoulli beam manufactured with Functionally Graded Material (FGM), which is modelled by fourth-order partial differential equations with variable coefficients, is examined by using the Adomian Decomposition Method (ADM).The method is one of the useful and powerful methods which can be easily applied to linear and nonlinear initial and boundary value problems. As to functionally graded materials, they are composites mixed by two or more materials at a...

Modeling the tip-sample interaction in atomic force microscopy with Timoshenko beam theory

Julio R. Claeyssen, Teresa Tsukazan, Leticia Tonetto, Daniela Tolfo (2013)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

A matrix framework is developed for single and multispan micro-cantilevers Timoshenko beam models of use in atomic force microscopy (AFM). They are considered subject to general forcing loads and boundary conditions for modeling tipsample interaction. Surface effects are considered in the frequency analysis of supported and cantilever microbeams. Extensive use is made of a distributed matrix fundamental response that allows to determine forced responses through convolution and to absorb non-homogeneous...

Modelling of singularities in elastoplastic materials with fatigue

Pavel Krejčí (1994)

Applications of Mathematics

The hypothesis that, on the macroscopic level, the accumulated fatigue of an elastoplastic material with kinematic hardening can be identified from the mathematical point of view with the dissipated energy, is used for the construction of a new constitutive elastoplastic fatigue model. Its analytical investigation characterizes conditions for the formation of singularities in a finite time. The corresponding constitutive law is then coupled with the dynamical equation of motion of a one-dimensional...

Modulation of the Camassa-Holm equation and reciprocal transformations

Simonetta Abenda, Tamara Grava (2005)

Annales de l’institut Fourier

We derive the modulation equations (Whitham equations) for the Camassa-Holm (CH) equation. We show that the modulation equations are hyperbolic and admit a bi-Hamiltonian structure. Furthermore they are connected by a reciprocal transformation to the modulation equations of the first negative flow of the Korteweg de Vries (KdV) equation. The reciprocal transformation is generated by the Casimir of the second Poisson bracket of the KdV averaged flow. We show that the geometry...

Monge-Ampère equations and surfaces with negative Gaussian curvature

Mikio Tsuji (1997)

Banach Center Publications

In [24], we studied the singularities of solutions of Monge-Ampère equations of hyperbolic type. Then we saw that the singularities of solutions do not coincide with the singularities of solution surfaces. In this note we first study the singularities of solution surfaces. Next, as the applications, we consider the singularities of surfaces with negative Gaussian curvature. Our problems are as follows: 1) What kinds of singularities may appear?, and 2) How can we extend the surfaces beyond the singularities?...

Monotone (A,B) entropy stable numerical scheme for Scalar Conservation Laws with discontinuous flux

Adimurthi, Rajib Dutta, G. D. Veerappa Gowda, Jérôme Jaffré (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

For scalar conservation laws in one space dimension with a flux function discontinuous in space, there exist infinitely many classes of solutions which are L1 contractive. Each class is characterized by a connection (A,B) which determines the interface entropy. For solutions corresponding to a connection (A,B), there exists convergent numerical schemes based on Godunov or Engquist−Osher schemes. The natural question is how to obtain schemes, corresponding to computationally less expensive monotone...

Currently displaying 21 – 40 of 49