Displaying 21 – 40 of 107

Showing per page

Periodic solutions of nonlinear wave equations with non-monotone forcing terms

Massimiliano Berti, Luca Biasco (2005)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Existence and regularity of periodic solutions of nonlinear, completely resonant, forced wave equations is proved for a large class of non-monotone forcing terms. Our approach is based on a variational Lyapunov-Schmidt reduction. The corresponding infinite dimensional bifurcation equation exhibits an intrinsic lack of compactness. This difficulty is overcome finding a-priori estimates for the constrained minimizers of the reduced action functional, through techniques inspired by regularity theory...

Perron-Frobenius operators and the Klein-Gordon equation

Francisco Canto-Martín, Håkan Hedenmalm, Alfonso Montes-Rodríguez (2014)

Journal of the European Mathematical Society

For a smooth curve Γ and a set Λ in the plane 2 , let A C ( Γ ; Λ ) be the space of finite Borel measures in the plane supported on Γ , absolutely continuous with respect to the arc length and whose Fourier transform vanishes on Λ . Following [12], we say that ( Γ , Λ ) is a Heisenberg uniqueness pair if A C ( Γ ; Λ ) = { 0 } . In the context of a hyperbola Γ , the study of Heisenberg uniqueness pairs is the same as looking for uniqueness sets Λ of a collection of solutions to the Klein-Gordon equation. In this work, we mainly address the...

Perte de régularité pour les équations d’ondes sur-critiques

Gilles Lebeau (2005)

Bulletin de la Société Mathématique de France

On prouve que le problème de Cauchy local pour l’équation d’onde sur-critique dans d , u + u p = 0 , p impair, avec d 3 et p > ( d + 2 ) / ( d - 2 ) , est mal posé dans H σ pour tout σ ] 1 , σ crit [ , où σ crit = d / 2 - 2 / ( p - 1 ) est l’exposant critique.

Perturbations visqueuses de problèmes mixtes hyperboliques et couches limites

Olivier Guès (1995)

Annales de l'institut Fourier

Ce travail concerne le problème de Cauchy-Dirichlet pour des systèmes hyperboliques semilinéaires multidimensionnels perturbés par une “petite viscosité". Les solutions considérées sont C et locales en temps, le but étant de décrire le comportement de la solution lorsque le paramètre de viscosité ( ϵ > 0 ) tend vers zéro. Il s’agit d’un problème de perturbation singulière pour lequel une “couche limite" se forme au voisinage du bord. Par des méthodes inspirées de l’optique géométrique non linéaire, nous...

Currently displaying 21 – 40 of 107