Existence and boundary stabilization of a nonlinear hyperbolic equation with time-dependent coefficients.
The existence and uniqueness of classical global solution and blow up of non-global solution to the first boundary value problem and the second boundary value problem for the equation are proved. Finally, the results of the above problem are applied to the equation arising from nonlinear waves in elastic rods
Problems of existence and nonexistence of global nontrivial solutions to quasilinear evolution differential inequalities in a product of cones are investigated. The proofs of the nonexistence results are based on the test-function method developed, for the case of the whole space, by Mitidieri, Pohozaev, Tesei and Véron. The existence result is established using the method of supersolutions.
We consider the initial-boundary value problem for a nonlinear higher-order nonlinear hyperbolic equation in a bounded domain. The existence of global weak solutions for this problem is established by using the potential well theory combined with Faedo-Galarkin method. We also established the asymptotic behavior of global solutions as by applying the Lyapunov method.
In this paper we consider a nonlinear Love equation associated with Dirichlet conditions. First, under suitable conditions, the existence of a unique local weak solution is proved. Next, a blow up result for solutions with negative initial energy is also established. Finally, a sufficient condition guaranteeing the global existence and exponential decay of weak solutions is given. The proofs are based on the linearization method, the Galerkin method associated with a priori estimates, weak convergence,...
We consider the existence, both locally and globally in time, the decay and the blow up of the solution for the extensible beam equation with nonlinear damping and source terms. We prove the existence of the solution by Banach contraction mapping principle. The decay estimates of the solution are proved by using Nakao’s inequality. Moreover, under suitable conditions on the initial datum, we prove that the solution blow up in finite time.