Displaying 1441 – 1460 of 2234

Showing per page

Perron-Frobenius operators and the Klein-Gordon equation

Francisco Canto-Martín, Håkan Hedenmalm, Alfonso Montes-Rodríguez (2014)

Journal of the European Mathematical Society

For a smooth curve Γ and a set Λ in the plane 2 , let A C ( Γ ; Λ ) be the space of finite Borel measures in the plane supported on Γ , absolutely continuous with respect to the arc length and whose Fourier transform vanishes on Λ . Following [12], we say that ( Γ , Λ ) is a Heisenberg uniqueness pair if A C ( Γ ; Λ ) = { 0 } . In the context of a hyperbola Γ , the study of Heisenberg uniqueness pairs is the same as looking for uniqueness sets Λ of a collection of solutions to the Klein-Gordon equation. In this work, we mainly address the...

Perte de régularité pour les équations d’ondes sur-critiques

Gilles Lebeau (2005)

Bulletin de la Société Mathématique de France

On prouve que le problème de Cauchy local pour l’équation d’onde sur-critique dans d , u + u p = 0 , p impair, avec d 3 et p > ( d + 2 ) / ( d - 2 ) , est mal posé dans H σ pour tout σ ] 1 , σ crit [ , où σ crit = d / 2 - 2 / ( p - 1 ) est l’exposant critique.

Perturbations visqueuses de problèmes mixtes hyperboliques et couches limites

Olivier Guès (1995)

Annales de l'institut Fourier

Ce travail concerne le problème de Cauchy-Dirichlet pour des systèmes hyperboliques semilinéaires multidimensionnels perturbés par une “petite viscosité". Les solutions considérées sont C et locales en temps, le but étant de décrire le comportement de la solution lorsque le paramètre de viscosité ( ϵ > 0 ) tend vers zéro. Il s’agit d’un problème de perturbation singulière pour lequel une “couche limite" se forme au voisinage du bord. Par des méthodes inspirées de l’optique géométrique non linéaire, nous...

Poincaré-invariant structures in the solution manifold of a nonlinear wave equation.

Irving E. Segal (1986)

Revista Matemática Iberoamericana

The solution manifold M of the equation ⎯φ + gφ3 = 0 in Minkowski space is studied from the standpoint of the establishment of differential-geometric structures therein. It is shown that there is an almost Kähler structure globally defined on M that is Poincaré invariant. In the vanishing curvature case g = 0 the structure obtained coincides with the complex Hilbert structure in the solution manifold of the real wave equation. The proofs are based on the transfer of the equation to an ambient universal...

Pointwise decay for solutions of the 2D Neumann exterior problem for the wave equation

Paolo Secchi (2004)

Bollettino dell'Unione Matematica Italiana

We consider the exterior problem in the plane for the wave equation with a Neumann boundary condition. We are interested to the asymptotic behavior for large times for the solution, and in particular to the dependence on the norms of the initial data in the estimate for the pointwise decay rate. In the paper we prove such an estimate, by a combination of the estimate of the local energy decay and decay estimates for the free space solution.

Polyhomogeneous solutions of wave equations in the radiation regime

Piotr T. Chruściel, Olivier Lengard (2000)

Journées équations aux dérivées partielles

While the physical properties of the gravitational field in the radiation regime are reasonably well understood, several mathematical questions remain unanswered. The question here is that of existence and properties of gravitational fields with asymptotic behavior compatible with existence of gravitational radiation. A framework to study those questions has been proposed by R. Penrose (R. Penrose, “Zero rest-mass fields including gravitation”, Proc. Roy. Soc. London A284 (1965), 159-203), and developed...

Currently displaying 1441 – 1460 of 2234