Stability of the Lagrange-Galerkin method with non-exact integration
In this paper we consider the boundary value problem of some nonlinear Kirchhoff-type equation with dissipation. We also estimate the total energy of the system over any time interval with a tolerance level . The amplitude of such vibrations is bounded subject to some restrictions on the uncertain disturbing force . After constructing suitable Lyapunov functional, uniform decay of solutions is established by means of an exponential energy decay estimate when the uncertain disturbances are insignificant....
This paper presents a stabilization technique for approximating transport equations. The key idea consists in introducing an artificial diffusion based on a two-level decomposition of the approximation space. The technique is proved to have stability and convergence properties that are similar to that of the streamline diffusion method.
We consider abstract second order evolution equations with unbounded feedback with delay. Existence results are obtained under some realistic assumptions. Sufficient and explicit conditions are derived that guarantee the exponential or polynomial stability. Some new examples that enter into our abstract framework are presented.
Motivated by several works on the stabilization of the oscillator by on-off feedbacks, we study the related problem for the one-dimensional wave equation, damped by an on-off feedback . We obtain results that are radically different from those known in the case of the oscillator. We consider periodic functions : typically is equal to on , equal to on and is -periodic. We study the boundary case and next the locally distributed case, and we give optimal results of stability. In both cases,...
Motivated by several works on the stabilization of the oscillator by on-off feedbacks, we study the related problem for the one-dimensional wave equation, damped by an on-off feedback . We obtain results that are radically different from those known in the case of the oscillator. We consider periodic functions a: typically a is equal to 1 on (0,T), equal to 0 on (T, qT) and is qT-periodic. We study the boundary case and next the locally distributed case, and we give optimal results of stability....
In the present paper, we consider a wave system that is fixed at one end and a boundary control input possessing a partial time delay of weight is applied over the other end. Using a simple boundary velocity feedback law, we show that the closed loop system generates a C0 group of linear operators. After a spectral analysis, we show that the closed loop system is a Riesz one, that is, there is a sequence of eigenvectors and generalized eigenvectors that forms a Riesz basis for the state Hilbert...
We consider the magnetic induction equation for the evolution of a magnetic field in a plasma where the velocity is given. The aim is to design a numerical scheme which also handles the divergence constraint in a suitable manner. We design and analyze an upwind scheme based on the symmetrized version of the equations in the non-conservative form. The scheme is shown to converge to a weak solution of the equations. Furthermore, the discrete divergence produced by the scheme is shown to be...
We develop a class of averaging lemmas for stochastic kinetic equations. The velocity is multiplied by a white noise which produces a remarkable change in time scale.Compared to the deterministic case and as far as we work in , the nature of regularity on averages is not changed in this stochastic kinetic equation and stays in the range of fractional Sobolev spaces at the price of an additional expectation. However all the exponents are changed; either time decay rates are slower (when the right...
In this paper we investigate the dispersive properties of the solutions of the two dimensional water-waves system with surface tension. First we prove Strichartz type estimates with loss of derivatives at the same low level of regularity we were able to construct the solutions in [3]. On the other hand, for smoother initial data, we prove that the solutions enjoy the optimal Strichartz estimates (i.e, without loss of regularity compared to the system linearized at ()).
The author is partially supported by: M. U. R. S. T. Prog. Nazionale “Problemi e Metodi nella Teoria delle Equazioni Iperboliche”.We treat the oscillatory problem for semilinear wave equation. The oscillatory initial data are of the type u(0, x) = h(x) + ε^(σ+1) * e^(il(x)/ε) * b0 (ε, x) ∂t u(0, x) = ε^σ * e^(il(x)/ε) * b1(ε, x). By using suitable variants of Strichartz estimate we extend the results from [6] on a priori estimates of the approximations of geometric optics.The main improvement...