Displaying 1641 – 1660 of 2236

Showing per page

Simultaneous controllability in sharp time for two elastic strings

Sergei Avdonin, Marius Tucsnak (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the simultaneously reachable subspace for two strings controlled from a common endpoint. We give necessary and sufficient conditions for simultaneous spectral and approximate controllability. Moreover we prove the lack of simultaneous exact controllability and we study the space of simultaneously reachable states as a function of the position of the joint. For each type of controllability result we give the sharp controllability time.

Single input controllability of a simplified fluid-structure interaction model

Yuning Liu, Takéo Takahashi, Marius Tucsnak (2013)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study a controllability problem for a simplified one dimensional model for the motion of a rigid body in a viscous fluid. The control variable is the velocity of the fluid at one end. One of the novelties brought in with respect to the existing literature consists in the fact that we use a single scalar control. Moreover, we introduce a new methodology, which can be used for other nonlinear parabolic systems, independently of the techniques previously used for the linearized problem....

Singular Perturbations for a Class of Degenerate Parabolic Equations with Mixed Dirichlet-Neumann Boundary Conditions

Marie-Josée Jasor, Laurent Lévi (2003)

Annales mathématiques Blaise Pascal

We establish a singular perturbation property for a class of quasilinear parabolic degenerate equations associated with a mixed Dirichlet-Neumann boundary condition in a bounded domain of p , 1 p < + . In order to prove the L 1 -convergence of viscous solutions toward the entropy solution of the corresponding first-order hyperbolic problem, we refer to some properties of bounded sequences in L together with a weak formulation of boundary conditions for scalar conservation laws.

Singular solutions to systems of conservation laws and their algebraic aspects

V. M. Shelkovich* (2010)

Banach Center Publications

We discuss the definitions of singular solutions (in the form of integral identities) to systems of conservation laws such as shocks, δ-, δ’-, and δ ( n ) -shocks (n = 2,3,...). Using these definitions, the Rankine-Hugoniot conditions for δ- and δ’-shocks are derived. The weak asymptotics method for the solution of the Cauchy problems admitting δ- and δ’-shocks is briefly described. The algebraic aspects of such singular solutions are studied. Namely, explicit formulas for flux-functions of singular solutions...

Singularly perturbed hyperbolic problems on metric graphs: asymptotics of solutions

Yuriy Golovaty, Volodymyr Flyud (2017)

Open Mathematics

We are interested in the evolution phenomena on star-like networks composed of several branches which vary considerably in physical properties. The initial boundary value problem for singularly perturbed hyperbolic differential equation on a metric graph is studied. The hyperbolic equation becomes degenerate on a part of the graph as a small parameter goes to zero. In addition, the rates of degeneration may differ in different edges of the graph. Using the boundary layer method the complete asymptotic...

Sistemi iperbolici di leggi di conservazione

Alberto Bressan (2000)

Bollettino dell'Unione Matematica Italiana

This survey paper provides a brief introduction to the mathematical theory of hyperbolic systems of conservation laws in one space dimension. After reviewing some basic concepts, we describe the fundamental theorem of Glimm on the global existence of BV solutions. We then outline the more recent results on uniqueness and stability of entropy weak solutions. Finally, some major open problems and research directions are discussed in the last section.

Currently displaying 1641 – 1660 of 2236