Existence results for mean field equations
This work is concerned with the study of the flow of an incompressible viscoelastic fluid of White-Metzner type. These models lead to systems of partial differential equations that are evolutionary, are globally well posed. The objective of this article is to prove the local and global existence of solutions of these systems.
We consider a class of 1d Lagrangian systems with random forcing in the spaceperiodic setting: These systems have been studied since the 1990s by Khanin, Sinai and their collaborators [7, 9, 11, 12, 15]. Here we give an overview of their results and then we expose our recent proof of the exponential convergence to the stationary measure [6]. This is the first such result in a classical setting, i.e. in the dual-Lipschitz metric with respect to the Lebesgue space for finite , partially answering...
One proves, in the case of piecewise smooth coefficients, that the time derivative of the solution of the so called dam problem is a measure, extending the result proved by the same authors in the case of Lipschitz continuous coefficients.
We investigate the role of Hertling-Manin condition on the structure constants of an associative commutative algebra in the theory of integrable systems of hydrodynamic type. In such a framework we introduce the notion of -manifold with compatible connection generalizing a structure introduced by Manin.
We consider a system of degenerate parabolic equations modelling a thin film, consisting of two layers of immiscible Newtonian liquids, on a solid horizontal substrate. In addition, the model includes the presence of insoluble surfactants on both the free liquid-liquid and liquid-air interfaces, and the presence of both attractive and repulsive van der Waals forces in terms of the heights of the two layers. We show that this system formally satisfies a Lyapunov structure, and a second energy...
We consider the flow of a viscous incompressible fluid through a rigid homogeneous porous medium. The permeability of the medium depends on the pressure, so that the model is nonlinear. We propose a finite element discretization of this problem and, in the case where the dependence on the pressure is bounded from above and below, we prove its convergence to the solution and propose an algorithm to solve the discrete system. In the case where the dependence on the pressure is exponential, we propose...
We analyze semidiscrete and second-order in time fully discrete finite element methods for the Kuramoto-Sivashinsky equation.
This note is concerned with proving the finite speed of propagation for some non-local porous medium equation by adapting arguments developed by Caffarelli and Vázquez (2010).
We study the existence and long-time behavior of weak solutions to Newton-Boussinesq equations in two-dimensional domains satisfying the Poincaré inequality. We prove the existence of a unique minimal finite-dimensional pullback -attractor for the process associated to the problem with respect to a large class of non-autonomous forcing terms.
Nous étudions le comportement asymptotique des fluides incompressibles dans les domaines extérieurs, quand l’obstacle devient de plus en plus fin, tendant vers une courbe. Nous étendons les travaux d’Iftimie, Lopes Filho, Nussenzveig Lopes et Kelliher dans lesquels les auteurs considèrent des obstacles se contractant vers un point. En utilisant des outils de l’analyse complexe, nous détaillerons le cas des fluides idéaux en dimension deux autour d’une courbe. Nous donnerons ensuite, à titre indicatif,...
On généralise aux fluides incompressibles à densité variable un certain nombre de résultats bien connus pour les équations de Navier-Stokes et d’Euler incompressibles.