Lie symmetries analysis of the shallow water equations.
Les effets dispersifs permettent de passer à la limite dans le système d’Euler compressible 2-D isentropique, quand le nombre de Mach tend vers zéro, même si les données initiales ne sont pas uniformément régulières.Ceci mène à des résultats de convergence vers des solutions non régulières du système d’Euler incompressible, comme les poches de tourbillon ou les solutions de Yudovich.
L’objet de cette note est d’étudier la limite quasineutre des équations de Vlasov Poisson en dimension d’espace. Ceci inclut l’obtention de résultats d’existence pour le système limite ainsi que la preuve de la convergence.
We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is well-described by the Saint–Venant equations (also called the shallow water equations). We prove the local controllability of this nonlinear control system around any steady state. As a corollary we get that one can move from any steady state to any other steady state.
We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is well-described by the Saint–Venant equations (also called the shallow water equations). We prove the local controllability of this nonlinear control system around any steady state. As a corollary we get that one can move from any steady state to any other steady state.
The local existence and the uniqueness of solutions for equations describing the motion of viscous compressible heat-conducting fluids in a domain bounded by a free surface is proved. First, we prove the existence of solutions of some auxiliary problems by the Galerkin method and by regularization techniques. Next, we use the method of successive approximations to prove the local existence for the main problem.
Local existence of solutions is proved for equations describing the motion of a magnetohydrodynamic incompressible fluid in a domain bounded by a free surface. In the exterior domain we have an electromagnetic field which is generated by some currents located on a fixed boundary. First by the Galerkin method and regularization techniques the existence of solutions of the linarized equations is proved; next by the method of successive aproximations the local existence is shown for the nonlinear problem....
We demonstrate that there exist no self-similar solutions of the incompressible magnetohydrodynamics (MHD) equations in the space . This is a consequence of proving the local smoothness of weak solutions via blowup methods for weak solutions which are locally . We present the extension of the Escauriaza-Seregin-Sverak method to MHD systems.
This paper proves the local well-posedness of strong solutions to a two-phase model with magnetic field and vacuum in a bounded domain without the standard compatibility conditions.
In this paper we establish the existence and uniqueness of the local solutions to the incompressible Euler equations in , , with any given initial data belonging to the critical Besov spaces . Moreover, a blowup criterion is given in terms of the vorticity field....
We study local well-posedness of the Cauchy problem for the generalized Camassa-Holm equation for the initial data u₀(x) in the Besov space with max(3/2,1 + 1/p) < s ≤ m and (p,r) ∈ [1,∞]², where g:ℝ → ℝ is a given -function (m ≥ 4) with g(0)=g’(0)=0, and κ ≥ 0 and γ ∈ ℝ are fixed constants. Using estimates for the transport equation in the framework of Besov spaces, compactness arguments and Littlewood-Paley theory, we get a local well-posedness result.
We discuss the 3D incompressible micropolar fluid equations, and give logarithmically improved regularity criteria in terms of both the velocity field and the pressure in Morrey-Campanato spaces, BMO spaces and Besov spaces.