Displaying 81 – 100 of 781

Showing per page

Asymptotic behaviour in planar vortex theory

Antonio Ambrosetti, Jian Fu Yang (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The asymptotic behaviour of solutions of a class of free-boundary problems arising in vortex theory is discussed.

Asymptotic dynamics in double-diffusive convection

Mikołaj Piniewski (2008)

Applicationes Mathematicae

We consider the double-diffusive convection phenomenon and analyze the governing equations. A system of partial differential equations describing the convective flow arising when a layer of fluid with a dissolved solute is heated from below is considered. The problem is placed in a functional analytic setting in order to prove a theorem on existence, uniqueness and continuous dependence on initial data of weak solutions in the class ( [ 0 , ) ; H ) L ² l o c ( + ; V ) . This theorem enables us to show that the infinite-dimensional...

Asymptotic estimates for a perturbation of the linearization of an equation for compressible viscous fluid flow

Gerhard Ströhmer (2008)

Studia Mathematica

We prove a priori estimates for a linear system of partial differential equations originating from the equations for the flow of a barotropic compressible viscous fluid under the influence of the gravity it generates. These estimates will be used in a forthcoming paper to prove the nonlinear stability of the motionless, spherically symmetric equilibrium states of barotropic, self-gravitating viscous fluids with respect to perturbations of zero total angular momentum. These equilibrium states as...

Asymptotic-Preserving scheme for a two-fluid Euler-Lorentz model

Stéphane Brull, Pierre Degond, Fabrice Deluzet, Alexandre Mouton (2011)

ESAIM: Proceedings

The present work is devoted to the simulation of a strongly magnetized plasma as a mixture of an ion fluid and an electron fluid. For simplicity reasons, we assume that each fluid is isothermal and is modelized by Euler equations coupled with a term representing the Lorentz force, and we assume that both Euler systems are coupled through a quasi-neutrality constraint of the form ni = ne. The numerical method which is described in the...

Baroclinic Kelvin Waves in a Rotating Circular Basin

R. N. Ibragimov (2012)

Mathematical Modelling of Natural Phenomena

A linear, uniformly stratified ocean model is used to investigate propagation of baroclinic Kelvin waves in a cylindrical basin. It is found that smaller wave amplitudes are inherent to higher mode individual terms of the obtained solutions that are also evanescent away of a costal line toward the center of the circular basin. It is also shown that the individual terms if the obtained solutions can be visualized as spinning patterns in rotating stratified fluid confined in a circular basin. Moreover,...

Bipolar Barotropic Non-Newtonian Compressible Fluids

Šárka Matušu-Nečasová, Mária Medviďová-Lukáčová (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We are interested in a barotropic motion of the non-Newtonian bipolar fluids . We consider a special case where the stress tensor is expressed in the form of potentials depending on eii and ( e i j x k ) . We prove the asymptotic stability of the rest state under the assumption of the regularity of the potential forces.

Bipolar barotropic nonnewtonian fluid

Šárka Matušů-Nečasová, Mária Medviďová (1994)

Commentationes Mathematicae Universitatis Carolinae

The paper describes the special situation of barotropic nonnewtonian fluid, where stress tensor can be written in the form of potentials which depend on e i j and ( e i j x k ) . For this case, we prove the existence and uniqueness of weak solution.

Currently displaying 81 – 100 of 781