On some Schroedinger-type variational inequalities
We characterize the dynamics of the finite time blow-up solutions with minimal mass for the focusing mass-critical Hartree equation with H¹(ℝ⁴) data and L²(ℝ⁴) data, where we make use of the refined Gagliardo-Nirenberg inequality of convolution type and the profile decomposition. Moreover, we analyze the mass concentration phenomenon of such blow-up solutions.
We investigate the solvability of the Neumann problem (1.1) involving a critical Sobolev exponent and lower order perturbations in bounded domains. Solutions are obtained by min max methods based on a topological linking. A nonlinear perturbation of a lower order is allowed to interfere with the spectrum of the operator -Δ with the Neumann boundary conditions.
This paper is intended to provide the reader with a review of the authors’ latest results dealing with the modeling of quantum dissipation/diffusion effects at the level of Schrödinger systems, in connection with the corresponding phase space and fluid formulations of such kind of phenomena, especially in what concerns the role of the Fokker–Planck mechanism in the description of open quantum systems and the macroscopic dynamics associated with some viscous hydrodynamic models of Euler and Navier–Stokes...
We describe qualitative behaviour of solutions of the Gross-Pitaevskii equation in 2D in terms of motion of vortices and radiation. To this end we introduce the notion of the intervortex energy. We develop a rather general adiabatic theory of motion of well separated vortices and present the method of effective action which gives a fairly straightforward justification of this theory. Finally we mention briefly two special situations where we are able to obtain rather detailed picture of the vortex...
By deriving a variant of interpolation inequality, we obtain a sharp criterion for global existence and blow-up of solutions to the inhomogeneous nonlinear Schrödinger equation with harmonic potential We also prove the existence of unstable standing-wave solutions via blow-up under certain conditions on the unbounded inhomogeneity and the power of nonlinearity, as well as the frequency of the wave.
We consider the 3D quantum BBGKY hierarchy which corresponds to the -particle Schrödinger equation. We assume the pair interaction is . For the interaction parameter , we prove that, provided an energy bound holds for solutions to the BBKGY hierarchy, the limit points satisfy the space-time bound conjectured by S. Klainerman and M. Machedon [45] in 2008. The energy bound was proven to hold for in [28]. This allows, in the case , for the application of the Klainerman–Machedon uniqueness theorem...