The search session has expired. Please query the service again.
Displaying 2281 –
2300 of
3679
We consider an optimal control problem for the three-dimensional non-linear Primitive Equations of the ocean in a vertically bounded and horizontally periodic domain. We aim to reconstruct the initial state of the ocean from Lagrangian observations. This inverse problem is formulated as an optimal control problem which consists in minimizing a cost function representing the least square error between Lagrangian observations and their model counterpart, plus a regularization term. This paper proves...
This paper deals with a strongly elliptic perturbation for the Stokes equation in exterior three-dimensional domains Ω with smooth boundary. The continuity equation is substituted by the equation -ε²Δp + div u = 0, and a Neumann boundary condition for the pressure is added. Using parameter dependent Sobolev norms, for bounded domains and for sufficiently smooth data we prove convergence for the velocity part and convergence for the pressure to the solution of the Stokes problem, with δ arbitrarily...
We consider a finite element discretization by
the Taylor–Hood element for the stationary
Stokes and Navier–Stokes
equations with slip boundary condition. The slip boundary condition
is enforced pointwise for nodal values of the velocity in
boundary nodes. We prove optimal error estimates in the
H1 and L2 norms for the velocity and pressure respectively.
Slightly below the transition temperatures, the behavior of superconducting materials is governed by the Ginzburg-Landau (GL) equation which characterizes the dynamical interaction of the density of superconducting electron pairs and the exited electromagnetic potential. In this paper, an optimal control problem of the strength of external magnetic field for one-dimensional thin film superconductors with respect to a convex criterion functional is considered. It is formulated as a nonlinear coefficient...
A multiphase generalization of the Monge–Kantorovich optimal transportation problem is addressed. Existence of optimal solutions is established. The optimality equations are related to classical Electrodynamics.
A multiphase generalization of the Monge–Kantorovich optimal
transportation problem is addressed.
Existence of optimal solutions is established.
The optimality equations are related to classical Electrodynamics.
In this paper we construct a model to describe some
aspects of the
deformation of the central region of the human lung
considered as a
continuous
elastically deformable medium. To achieve this purpose, we study
the interaction
between the pipes composing the tree and the fluid that goes
through it. We use a stationary model to determine the deformed radius of each branch. Then, we solve a constrained minimization problem, so as to minimize the viscous (dissipated) energy in the tree. The key...
We present a model for describing the spread of an infectious disease with public
screening measures to control the spread. We want to address the problem of determining an
optimal screening strategy for a disease characterized by appreciable duration of the
infectiveness period and by variability of the transmission risk. The specific disease we
have in mind is the HIV infection. However the model will apply to a disease for which
class-age structure...
The paper presents a discontinuous Galerkin method for solving partial integro-differential equations arising from the European as well as American option pricing when the underlying asset follows an exponential variance gamma process. For practical purposes of numerical solving we introduce the modified option pricing problem resulting from a localization to a bounded domain and an approximation of small jumps, and we discuss the related error estimates. Then we employ a robust numerical procedure...
It is proved that any weak solution to a nonlinear beam equation is eventually globally oscillatory, i.e., there is a uniform oscillatory interval for large times.
The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stability of closed-loop system achieved by some stabilizing output feedback laws may be destroyed by whatever small time delay there exists in observation. In this paper, we are concerned with a particularly interesting case: Boundary output feedback stabilization of a one-dimensional wave equation system for which the...
Currently displaying 2281 –
2300 of
3679