An existence theorem for the v. Kármán equations under the condition of free boundary
The existence of a continuous right inverse of the divergence operator in , 1 < p < ∞, is a well known result which is basic in the analysis of the Stokes equations. The object of this paper is to show that the continuity also holds for some weighted norms. Our results are valid for Ω ⊂ ℝⁿ a bounded domain which is star-shaped with respect to a ball B ⊂ Ω. The continuity results are obtained by using an explicit solution of the divergence equation and the classical theory of singular integrals...
The local maximal operator for the Schrödinger operators of order α > 1 is shown to be bounded from to L² for any s > 3/8. This improves the previous result of Sjölin on the regularity of solutions to fractional order Schrödinger equations. Our method is inspired by Bourgain’s argument in the case of α = 2. The extension from α = 2 to general α > 1 faces three essential obstacles: the lack of Lee’s reduction lemma, the absence of the algebraic structure of the symbol and the inapplicable...
As observed by Yamazaki, the third component of the magnetic field can be estimated by the corresponding component of the velocity field in
The Dirac equation for spinor-valued fields on the Minkowski space of even dimension form a hyperbolic system of partial differential equations. In the paper, we are showing how to reconstruct the solution from initial data given on the upper sheet of the hyperboloid. In particular, we derive an integral formula expressing the value of in a chosen point as an integral over a compact cycle given by the intersection of the null cone with in the Minkowski space .
This special volume of the ESAIM Journal, Mathematical Modelling and Numerical Analysis, contains a collection of articles on probabilistic interpretations of some classes of nonlinear integro-differential equations. The selected contributions deal with a wide range of topics in applied probability theory and stochastic analysis, with applications in a variety of scientific disciplines, including physics, biology, fluid mechanics, molecular chemistry, financial mathematics and bayesian statistics....
Estimates of the generalized Stokes resolvent system, i.e. with prescribed divergence, in an infinite cylinder Ω = Σ × ℝ with , a bounded domain of class , are obtained in the space , q ∈ (1,∞). As a preparation, spectral decompositions of vector-valued homogeneous Sobolev spaces are studied. The main theorem is proved using the techniques of Schauder decompositions, operator-valued multiplier functions and R-boundedness of operator families.
An optimal control problem is studied for a predator-prey system of PDE, with a logistic growth rate of the prey and a general functional response of the predator. The control function has two components. The purpose is to maximize a mean density of the two species in their habitat. The existence of the optimal solution is analyzed and some necessary optimality conditions are established. The form of the optimal control is found in some particular...
We present in this paper a pressure correction scheme for the barotropic compressible Navier-Stokes equations, which enjoys an unconditional stability property, in the sense that the energy and maximum-principle-based a priori estimates of the continuous problem also hold for the discrete solution. The stability proof is based on two independent results for general finite volume discretizations, both interesting for their own sake: the L2-stability of the discrete advection operator provided it...