Weak solutions to a nonlinear variational wave equation with general data
We prove the existence of weak solutions to the Navier-Stokes equations describing the motion of a fluid in a Y-shaped domain.
We consider the linear Schrödinger equation under periodic boundary conditions, driven by a random force and damped by a quasilinear damping: The force is white in time and smooth in ; the potential is typical. We are concerned with the limiting, as , behaviour of solutions on long time-intervals , and with behaviour of these solutions under the double limit and . We show that these two limiting behaviours may be described in terms of solutions for thesystem of effective equations for(...
Bounded weak solutions to a particular class of degenerate parabolic cross-diffusion systems are shown to coincide with the unique strong solution determined by the same initial condition on the maximal existence interval of the latter. The proof relies on an estimate established for a relative entropy associated to the system.
In this paper, travelling wave solutions for the Zakharov equation in plasmas with power law nonlinearity are studied by using the Weierstrass elliptic function method. As a result, some previously known solutions are recovered, and at the same time some new ones are also given.
Consider the flow of a viscous, incompressible fluid past a rotating obstacle with velocity at infinity parallel to the axis of rotation. After a coordinate transform in order to reduce the problem to a Navier-Stokes system on a fixed exterior domain and a subsequent linearization we are led to a modified Oseen system with two additional terms one of which is not subordinate to the Laplacean. In this paper we describe two different approaches to this problem in the whole space case. One of them...
We review some well posed formulations of the evolution part of the Cauchy problem of General Relativity that we have recently obtained. We include also a new first order symmetric hyperbolic system based directly on the Riemann tensor and the full Bianchi identities. It has only physical characteristics and matter sources can be included. It is completely equivalent to our other system with these properties.
The paper concerns uniqueness of weak solutions to non-Newtonian fluids with nonstandard growth conditions for the Cauchy stress tensor. We recall the results on existence of weak solutions and additionally provide the proof of existence of measure-valued solutions. Motivated by the fluids of strongly inhomogeneous behaviour and having the property of rapid shear thickening we observe that the described situation cannot be captured by power-law-type rheology. We describe the growth conditions with...
In this paper we consider dispersive electromagnetic systems in dielectric materials in the presence of acoustic wavefronts. A theory for existence, uniqueness, and continuous dependence on data is presented for a general class of systems which include acoustic pressure-dependent Debye polarization models for dielectric materials.
In this paper we consider dispersive electromagnetic systems in dielectric materials in the presence of acoustic wavefronts. A theory for existence, uniqueness, and continuous dependence on data is presented for a general class of systems which include acoustic pressure-dependent Debye polarization models for dielectric materials.
In this paper, we consider the interaction between a rigid body and an incompressible, homogeneous, viscous fluid. This fluid-solid system is assumed to fill the whole space , or . The equations for the fluid are the classical Navier-Stokes equations whereas the motion of the rigid body is governed by the standard conservation laws of linear and angular momentum. The time variation of the fluid domain (due to the motion of the rigid body) is not known a priori, so we deal with a free boundary...
These notes are an introduction to the recent paper [7], about the well-posedness of the Prandtl equation. The difficulties and main ideas of the paper are described on a simpler linearized model.
In this paper, we study a class of Initial-Boundary Value Problems proposed by Colin and Ghidaglia for the Korteweg-de Vries equation posed on a bounded domain (0,L). We show that this class of Initial-Boundary Value Problems is locally well-posed in the classical Sobolev space Hs(0,L) for s > -3/4, which provides a positive answer to one of the open questions of Colin and Ghidaglia [Adv. Differ. Equ. 6 (2001) 1463–1492].