Displaying 401 – 420 of 470

Showing per page

Asymptotic behavior of a steady flow in a two-dimensional pipe

Piotr Bogusław Mucha (2003)

Studia Mathematica

The paper investigates the asymptotic behavior of a steady flow of an incompressible viscous fluid in a two-dimensional infinite pipe with slip boundary conditions and large flux. The convergence of the solutions to data at infinities is examined. The technique enables computing optimal factors of exponential decay at the outlet and inlet of the pipe which are unsymmetric for nonzero fluxes of the flow. As a corollary, the asymptotic structure of the solutions is obtained. The results show strong...

Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential

Veronica Felli, Alberto Ferrero, Susanna Terracini (2011)

Journal of the European Mathematical Society

Asymptotics of solutions to Schrödinger equations with singular magnetic and electric potentials is investigated. By using a Almgren type monotonicity formula, separation of variables, and an iterative Brezis–Kato type procedure, we describe the exact behavior near the singularity of solutions to linear and semilinear (critical and subcritical) elliptic equations with an inverse square electric potential and a singular magnetic potential with a homogeneity of order −1.

Asymptotic Behavior of the Solution of the Distribution Diffusion Equation for FENE Dumbbell Polymer Model

I. S. Ciuperca, L. I. Palade (2011)

Mathematical Modelling of Natural Phenomena

This paper deals with the evolution Fokker-Planck-Smoluchowski configurational probability diffusion equation for the FENE dumbbell model in dilute polymer solutions. We prove the exponential convergence in time of the solution of this equation to a corresponding steady-state solution, for arbitrary velocity gradients.

Asymptotic behavior of the solutions to a one-dimensional motion of compressible viscous fluids

Shigenori Yanagi (1995)

Mathematica Bohemica

We study the one-dimensional motion of the viscous gas represented by the system v t - u x = 0 , u t + p ( v ) x = μ ( u x / v ) x + f 0 x v x ¨ , t , with the initial and the boundary conditions ( v ( x , 0 ) , u ( x , 0 ) ) = ( v 0 ( x ) , u 0 ( x ) ) , u ( 0 , t ) = u ( X , t ) = 0 . We are concerned with the external forces, namely the function f , which do not become small for large time t . The main purpose is to show how the solution to this problem behaves around the stationary one, and the proof is based on an elementary L 2 -energy method.

Asymptotic behaviour in planar vortex theory

Antonio Ambrosetti, Jian Fu Yang (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The asymptotic behaviour of solutions of a class of free-boundary problems arising in vortex theory is discussed.

Currently displaying 401 – 420 of 470