Approximate solutions of the incompressible Euler equations with no concentrations
In this paper we analyze the stream function-vorticity-pressure method for the Stokes eigenvalue problem. Further, we obtain full order convergence rate of the eigenvalue approximations for the Stokes eigenvalue problem based on asymptotic error expansions for two nonconforming finite elements, and . Using the technique of eigenvalue error expansion, the technique of integral identities and the extrapolation method, we can improve the accuracy of the eigenvalue approximations.
By means of eigenvalue error expansion and integral expansion techniques, we propose and analyze the stream function-vorticity-pressure method for the eigenvalue problem associated with the Stokes equations on the unit square. We obtain an optimal order of convergence for eigenvalues and eigenfuctions. Furthermore, for the bilinear finite element space, we derive asymptotic expansions of the eigenvalue error, an efficient extrapolation and an a posteriori error estimate for the eigenvalue. Finally,...
Let be a non-negative function of class from to , which vanishes exactly at two points and . Let be the set of functions of a real variable which tend to at and to at and whose one dimensional energyis finite. Assume that there exist two isolated minimizers and of the energy over . Under a mild coercivity condition on the potential and a generic spectral condition on the linearization of the one-dimensional Euler–Lagrange operator at and , it is possible to prove...
Let W be a non-negative function of class C3 from to , which vanishes exactly at two points a and b. Let S1(a, b) be the set of functions of a real variable which tend to a at -∞ and to b at +∞ and whose one dimensional energy is finite. Assume that there exist two isolated minimizers z+ and z- of the energy E1 over S1(a, b). Under a mild coercivity condition on the potential W and a generic spectral condition on the linearization of the one-dimensional Euler–Lagrange operator at z+ and...
Questo lavoro costituisce un survey sui problemi di limite asintotico per le soluzioni delle equazioni di Ginzburg-Landau in dimensione due. Vengono presentati essenzialmente i risultati di [BBH] e [BR] sulla formazione ed il comportamento asintotico dei vortici in un dominio bidimensionale nel caso fortemente repulsivo (large limit).
2000 Mathematics Subject Classification: 35Q02, 35Q05, 35Q10, 35B40.We consider the stationary one dimensional Schrödinger-Poisson system on a bounded interval with a background potential describing a quantum well. Using a partition function which forces the particles to remain in the quantum well, the limit h®0 in the nonlinear system leads to a uniquely solved nonlinear problem with concentrated particle density. It allows to conclude about the convergence of the solution.