A Global a posteriori Error Estimate for Quasilinear Elliptic Problems.
The paper is dedicated to the global well-posedness of the barotropic compressible Navier-Stokes-Poisson system in the whole space with N ≥ 3. The global existence and uniqueness of the strong solution is shown in the framework of hybrid Besov spaces. The initial velocity has the same critical regularity index as for the incompressible homogeneous Navier-Stokes equations. The proof relies on a uniform estimate for a mixed hyperbolic/parabolic linear system with a convection term.
This paper is concerned with the study of a model case of first order Hamilton-Jacobi equations posed on a “junction”, that is to say the union of a finite number of half-lines with a unique common point. The main result is a comparison principle. We also prove existence and stability of solutions. The two challenging difficulties are the singular geometry of the domain and the discontinuity of the Hamiltonian. As far as discontinuous Hamiltonians are concerned, these results seem to be new. They...
The invasive capability is fundamental in determining the malignancy of a solid tumor. Revealing biomedical strategies that are able to partially decrease cancer invasiveness is therefore an important approach in the treatment of the disease and has given rise to multiple in vitro and in silico models. We here develop a hybrid computational framework, whose aim is to characterize the effects of the different cellular and subcellular mechanisms involved...
In this paper we deal with a semilinear hyperbolic chemotaxis model in one space dimension evolving on a network, with suitable transmission conditions at nodes. This framework is motivated by tissue-engineering scaffolds used for improving wound healing. We introduce a numerical scheme, which guarantees global mass densities conservation. Moreover our scheme is able to yield a correct approximation of the effects of the source term at equilibrium. Several numerical tests are presented to show the...
Here we investigate the Cauchy problem for the barotropic Navier-Stokes equations in , in the critical Besov spaces setting. We improve recent results as regards the uniqueness condition: initial velocities in critical Besov spaces with (not too) negative indices generate a unique local solution. Apart from (critical) regularity, the initial density just has to be bounded away from and to tend to some positive constant at infinity. Density-dependent viscosity coefficients may be considered. Using...
We recover the Navier–Stokes equation as the incompressible limit of a stochastic lattice gas in which particles are allowed to jump over a mesoscopic scale. The result holds in any dimension assuming the existence of a smooth solution of the Navier–Stokes equation in a fixed time interval. The proof does not use nongradient methods or the multi-scale analysis due to the long range jumps.
In this work we study a fully discrete mixed scheme, based on continuous finite elements in space and a linear semi-implicit first-order integration in time, approximating an Ericksen–Leslie nematic liquid crystal model by means of a Ginzburg–Landau penalized problem. Conditional stability of this scheme is proved via a discrete version of the energy law satisfied by the continuous problem, and conditional convergence towards generalized Young measure-valued solutions to the Ericksen–Leslie problem...
This paper proves a logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain with the Navier-type boundary condition.
We present an overview of some contributions of the author regarding Camassa--Holm type equations. We show that an equation unifying both Camassa--Holm and Novikov equations can be derived using the invariance under certain suitable scaling, conservation of the Sobolev norm and existence of peakon solutions. Qualitative analysis of the two-peakon dynamics is given.
This article is dedicated to localization of the principal eigenvalue (PE) of the Stokes operator acting on solenoidal vector fields that vanish outside a large random domain modeling the pore space in a cubic block of porous material with disordered micro-structure. Its main result is an asymptotically deterministic lower bound for the PE of the sum of a low compressibility approximation to the Stokes operator and a small scaled random potential term, which is applied to produce a similar bound...