Displaying 1681 – 1700 of 3679

Showing per page

Non-autonomous 2D Navier–Stokes system with a simple global attractor and some averaging problems

V. V. Chepyzhov, M. I. Vishik (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We study the global attractor of the non-autonomous 2D Navier–Stokes system with time-dependent external force g ( x , t ) . We assume that g ( x , t ) is a translation compact function and the corresponding Grashof number is small. Then the global attractor has a simple structure: it is the closure of all the values of the unique bounded complete trajectory of the Navier–Stokes system. In particular, if g ( x , t ) is a quasiperiodic function with respect to t , then the attractor is a continuous image of a torus. Moreover the...

Non-autonomous 2D Navier–Stokes system with a simple global attractor and some averaging problems

V. V. Chepyzhov, M. I. Vishik (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the global attractor of the non-autonomous 2D Navier–Stokes system with time-dependent external force g(x,t). We assume that g(x,t) is a translation compact function and the corresponding Grashof number is small. Then the global attractor has a simple structure: it is the closure of all the values of the unique bounded complete trajectory of the Navier–Stokes system. In particular, if g(x,t) is a quasiperiodic function with respect to t, then the attractor is a continuous image...

Non-Euclidean geometry and differential equations

A. Popov (1996)

Banach Center Publications

In this paper a geometrical link between partial differential equations (PDE) and special coordinate nets on two-dimensional smooth manifolds with the a priori given curvature is suggested. The notion of G-class (the Gauss class) of differential equations admitting such an interpretation is introduced. The perspective of this approach is the possibility of applying the instruments and methods of non-Euclidean geometry to the investigation of differential equations. The equations generated by the...

Non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid

Jianwei Dong, Junhui Zhu, Litao Zhang (2024)

Czechoslovak Mathematical Journal

We study the non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid without viscosity. We first show that the life span of the classical solutions with decay at far fields must be finite for the 1D Cauchy problem if the initial momentum weight is positive. Then, we present several sufficient conditions for the non-existence of global classical solutions to the 1D initial-boundary value problem on [ 0 , 1 ] . To prove these results, some new average quantities are...

Non-generic blow-up solutions for the critical focusing NLS in 1-D

Joachim Krieger, Wilhelm Schlag (2009)

Journal of the European Mathematical Society

We consider the L 2 -critical focusing non-linear Schrödinger equation in 1 + 1 -d. We demonstrate the existence of a large set of initial data close to the ground state soliton resulting in the pseudo-conformal type blow-up behavior. More specifically, we prove a version of a conjecture of Perelman, establishing the existence of a codimension one stable blow-up manifold in the measurable category.

Currently displaying 1681 – 1700 of 3679