Displaying 1821 – 1840 of 3679

Showing per page

On a generalized Stokes problem

Václav Mácha (2011)

Open Mathematics

We deal with a generalization of the Stokes system. Instead of the Laplace operator, we consider a general elliptic operator and a pressure gradient with small perturbations. We investigate the existence and uniqueness of a solution as well its regularity properties. Two types of regularity are provided. Aside from the classical Hilbert regularity, we also prove the Hölder regularity for coefficients in VMO space.

On a hybrid finite-volume-particle method

Alina Chertock, Alexander Kurganov (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a hybrid finite-volume-particle numerical method for computing the transport of a passive pollutant by a flow. The flow is modeled by the one- and two-dimensional Saint-Venant system of shallow water equations and the pollutant propagation is described by a transport equation. This paper is an extension of our previous work [Chertock, Kurganov and Petrova, J. Sci. Comput. (to appear)], where the one-dimensional finite-volume-particle method has been proposed. The core idea behind the...

On a hybrid finite-volume-particle method

Alina Chertock, Alexander Kurganov (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a hybrid finite-volume-particle numerical method for computing the transport of a passive pollutant by a flow. The flow is modeled by the one- and two-dimensional Saint-Venant system of shallow water equations and the pollutant propagation is described by a transport equation. This paper is an extension of our previous work [Chertock, Kurganov and Petrova, J. Sci. Comput. (to appear)], where the one-dimensional finite-volume-particle method has been proposed. The core idea behind the...

On a low Mach nuclear core model

Stéphane Dellacherie (2012)

ESAIM: Proceedings

We propose to formally derive a low Mach number model adapted to the modeling of a water nuclear core (e.g. of PWR- or BWR-type) in the forced convection regime or in the natural convection regime by filtering out the acoustic waves in the compressible Navier-Stokes system. Then, we propose a monodimensional stationary analytical solution with regular and singular charge loss when the equation of state is a stiffened gas equation. Moreover, we show...

On a model of rotating superfluids

Sylvia Serfaty (2001)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an energy-functional describing rotating superfluids at a rotating velocity ω , and prove similar results as for the Ginzburg-Landau functional of superconductivity: mainly the existence of branches of solutions with vortices, the existence of a critical ω above which energy-minimizers have vortices, evaluations of the minimal energy as a function of ω , and the derivation of a limiting free-boundary problem.

On a model of rotating superfluids

Sylvia Serfaty (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an energy-functional describing rotating superfluids at a rotating velocity ω, and prove similar results as for the Ginzburg-Landau functional of superconductivity: mainly the existence of branches of solutions with vortices, the existence of a critical ω above which energy-minimizers have vortices, evaluations of the minimal energy as a function of ω, and the derivation of a limiting free-boundary problem.

On a model system for the oblique interaction of internal gravity waves

Jean-Claude Saut, Nikolay Tzvetkov (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We give local and global well-posedness results for a system of two Kadomtsev-Petviashvili (KP) equations derived by R. Grimshaw and Y. Zhu to model the oblique interaction of weakly nonlinear, two dimensional, long internal waves in shallow fluids. We also prove a smoothing effect for the amplitudes of the interacting waves. We use the Fourier transform restriction norms introduced by J. Bourgain and the Strichartz estimates for the linear KP group. Finally we extend the result of [3] for lower...

On a Navier-Stokes type equation and inequality

Giovanni Prouse (1992)

Banach Center Publications

A Navier-Stokes type equation corresponding to a non-linear relationship between the stress tensor and the velocity deformation tensor is studied and existence and uniqueness theorems for the solution, in the 3-dimensional case, of the Cauchy-Dirichlet problem, for a bounded solution and for an almost periodic solution are given. An inequality which in some sense is the limit of the equation is also considered and existence theorems for the solution of the Cauchy-Dirichlet problems and for a periodic...

On a nonlocal problem for a confined plasma in a Tokamak

Weilin Zou, Fengquan Li, Boqiang Lv (2013)

Applications of Mathematics

The paper deals with a nonlocal problem related to the equilibrium of a confined plasma in a Tokamak machine. This problem involves terms u * ' ( | u > u ( x ) | ) and | u > u ( x ) | , which are neither local, nor continuous, nor monotone. By using the Galerkin approximate method and establishing some properties of the decreasing rearrangement, we prove the existence of solutions to such problem.

On a non-stationary free boundary transmission problem with continuous extraction and convection, arising in industrial processes

Bui Ton, Grzegorz Łukaszewicz (1992)

Banach Center Publications

The existence of a weak solution of a non-stationary free boundary transmission problem arising in the production of industrial materials is established. The process is governed by a coupled system involving the Navier--Stokes equations and a non-linear heat equation. The stationary case was studied in [7].

Currently displaying 1821 – 1840 of 3679