Displaying 81 – 100 of 158

Showing per page

Les variétés riemanniennes de dimension quatre 4 / 19 pincées

Marina Ville (1989)

Annales de l'institut Fourier

Nous montrons qu’une variété riemannienne de dimension 4 orientable dont la courbure sectionnelle est 4/19-pincée est homéomorphe à la sphère S 4 ou au projectif P 2 . La preuve utilise une inégalité entre les nombres caractéristiques qui découle d’estimées sur le tenseur de courbure.

L'espace des feuilletages d'un espace analytique compact

Daniel Barlet (1987)

Annales de l'institut Fourier

Nous construisons sur l’ensemble des feuilletages (avec singulariés) d’un espace analytique compact normal une structure analytique complexe. Dans le cas faiblement kählérien, nous montrons qu’à un point frontière de la compactification naturelle de l’espace des feuilletages est encore associé un feuilletage.

Levi-flat filling of real two-spheres in symplectic manifolds (I)

Hervé Gaussier, Alexandre Sukhov (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Let ( M , J , ω ) be a manifold with an almost complex structure J tamed by a symplectic form ω . We suppose that M has the complex dimension two, is Levi-convex and with bounded geometry. We prove that a real two-sphere with two elliptic points, embedded into the boundary of M can be foliated by the boundaries of pseudoholomorphic discs.

Levi-flat filling of real two-spheres in symplectic manifolds (II)

Hervé Gaussier, Alexandre Sukhov (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

We consider a compact almost complex manifold ( M , J , ω ) with smooth Levi convex boundary M and a symplectic tame form ω . Suppose that S 2 is a real two-sphere, containing complex elliptic and hyperbolic points and generically embedded into M . We prove a result on filling S 2 by holomorphic discs.

Lie Algebra bundles on s-Kähler manifolds, with applications to Abelian varieties

Giovanni Gaiffi, Michele Grassi (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

We prove that one can obtain natural bundles of Lie algebras on rank two s -Kähler manifolds, whose fibres are isomorphic respectively to so ( s + 1 , s + 1 ) , su ( s + 1 , s + 1 ) and sl ( 2 s + 2 , ) . These bundles have natural flat connections, whose flat global sections generalize the Lefschetz operators of Kähler geometry and act naturally on cohomology. As a first application, we build an irreducible representation of a rational form of su ( s + 1 , s + 1 ) on (rational) Hodge classes of Abelian varieties with rational period matrix.

Lie algebras of vector fields and generalized foliations.

Janusz Grabowski (1993)

Publicacions Matemàtiques

The main result is a Pursell-Shanks type theorem describing isomorphism of the Lie algebras of vector fields preserving generalized foliations. The result includes as well smooth as real-analytic and holomorphic cases.

Currently displaying 81 – 100 of 158