Une algèbre graduée universelle pour les connexions sans torsion.
We prove that the Lie algebra of infinitesimal automorphisms of the transverse structure on the total space of the transverse bundle of a foliation is isomorphic to the semi-direct product of the Lie algebra of the infinitesimal automorphism of the foliation by the vector space of the transverse vector fields. The derivations of this algebra are entirely determined and we prove that this Lie algebra characterises the foliated structure of a compact Hausdorff foliation.
Pour un feuilletage à fibré trivialisé, on définit une “algèbre de classes caractéristiques” ; cette algèbre contient les classes caractéristiques habituelles du feuilletage. On montre qu’elle provient d’une algèbre caractéristique universelle.
Nous donnons une courte démonstration de ce que les classes des variétés singulières définies par Marie-Hélène Schwartz au moyen des « champs radiaux » coïncident avec la notion fonctorielle définie par Robert MacPherson.
Let be a codim 1 local foliation generated by a germ of the form for some complex numbers and germs of holomorphic functions at the origin in . We determine, under some conditions, the set of equivalence classes of first order unfoldings and construct explicitly a universal unfolding of . Special cases of this include foliations with holomorphic or meromorphic first integrals. We also show that the unfolding theory for is equivalent to the unfolding theory for the multiform function...
The objective of this paper is to give a criterium for an unfolding of a holomorphic foliation with singularities to be holomorphically trivial.
We establish in this paper a lower bound for the volume of a unit vector field defined on , . This lower bound is related to the sum of the absolute values of the indices of at and .