Previous Page 2

Displaying 21 – 35 of 35

Showing per page

Discontinuous Galerkin method for nonlinear convection-diffusion problems with mixed Dirichlet-Neumann boundary conditions

Oto Havle, Vít Dolejší, Miloslav Feistauer (2010)

Applications of Mathematics

The paper is devoted to the analysis of the discontinuous Galerkin finite element method (DGFEM) applied to the space semidiscretization of a nonlinear nonstationary convection-diffusion problem with mixed Dirichlet-Neumann boundary conditions. General nonconforming meshes are used and the NIPG, IIPG and SIPG versions of the discretization of diffusion terms are considered. The main attention is paid to the impact of the Neumann boundary condition prescribed on a part of the boundary on the truncation...

Discontinuous Galerkin semi-Lagrangian method for Vlasov-Poisson

N. Crouseilles, M. Mehrenberger, F. Vecil (2011)

ESAIM: Proceedings

We present a discontinuous Galerkin scheme for the numerical approximation of the one-dimensional periodic Vlasov-Poisson equation. The scheme is based on a Galerkin-characteristics method in which the distribution function is projected onto a space of discontinuous functions. We present comparisons with a semi-Lagrangian method to emphasize the good behavior of this scheme when applied to Vlasov-Poisson test cases.

Discrete compactness for a discontinuous Galerkin approximation of Maxwell's system

Emmanuel Creusé, Serge Nicaise (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we prove the discrete compactness property for a discontinuous Galerkin approximation of Maxwell's system on quite general tetrahedral meshes. As a consequence, a discrete Friedrichs inequality is obtained and the convergence of the discrete eigenvalues to the continuous ones is deduced using the theory of collectively compact operators. Some numerical experiments confirm the theoretical predictions.

Discretization methods with analytical characteristic methods for advection-diffusion-reaction equations and 2d applications

Jürgen Geiser (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

Our studies are motivated by a desire to model long-time simulations of possible scenarios for a waste disposal. Numerical methods are developed for solving the arising systems of convection-diffusion-dispersion-reaction equations, and the received results of several discretization methods are presented. We concentrate on linear reaction systems, which can be solved analytically. In the numerical methods, we use large time-steps to achieve long simulation times of about 10 000 years. We propose...

Div-curl lemma revisited: Applications in electromagnetism

Marián Slodička, Ján Jr. Buša (2010)

Kybernetika

Two new time-dependent versions of div-curl results in a bounded domain Ω 3 are presented. We study a limit of the product v k w k , where the sequences v k and w k belong to Ł 2 ( Ω ) . In Theorem 2.1 we assume that × v k is bounded in the L p -norm and · w k is controlled in the L r -norm. In Theorem 2.2 we suppose that × w k is bounded in the L p -norm and · w k is controlled in the L r -norm. The time derivative of w k is bounded in both cases in the norm of - 1 ( Ω ) . The convergence (in the sense of distributions) of v k w k to the product v w of weak limits...

Domain decomposition methods for solving the Burgers equation

Robert Cimrman (1999)

Applications of Mathematics

This article presents some results of numerical tests of solving the two-dimensional non-linear unsteady viscous Burgers equation. We have compared the known convergence and parallel performance properties of the additive Schwarz domain decomposition method with or without a coarse grid for the model Poisson problem with those obtained by experiments for the Burgers problem.

Dual-mixed finite element methods for the Navier-Stokes equations

Jason S. Howell, Noel J. Walkington (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A mixed finite element method for the Navier–Stokes equations is introduced in which the stress is a primary variable. The variational formulation retains the mathematical structure of the Navier–Stokes equations and the classical theory extends naturally to this setting. Finite element spaces satisfying the associated inf–sup conditions are developed.

Dynamics of Biomembranes: Effect of the Bulk Fluid

A. Bonito, R.H. Nochetto, M.S. Pauletti (2011)

Mathematical Modelling of Natural Phenomena

We derive a biomembrane model consisting of a fluid enclosed by a lipid membrane. The membrane is characterized by its Canham-Helfrich energy (Willmore energy with area constraint) and acts as a boundary force on the Navier-Stokes system modeling an incompressible fluid. We give a concise description of the model and of the associated numerical scheme. We provide numerical simulations with emphasis on the comparisons between different types of flow:...

Dynamics of shock waves in elastic-plastic solids

N. Favrie, S. Gavrilyuk (2011)

ESAIM: Proceedings

The Maxwell type elastic-plastic solids are characterized by decaying the absolute values of the principal components of the deviatoric part of the stress tensor during the plastic relaxation step. We propose a mathematical formulation of such a model which is compatible with the von Mises criterion of plasticity. Numerical examples show the ability of the model to deal with complex physical phenomena.

Currently displaying 21 – 35 of 35

Previous Page 2