Page 1 Next

Displaying 1 – 20 of 51

Showing per page

Parabolic perturbations of Hamilton–Jacobi equations

Yakov Sinai (1998)

Fundamenta Mathematicae

We consider a parabolic perturbation of the Hamilton-Jacobi equation where the potential is periodic in space and time. We show that any solution converges to a limit not depending on initial conditions.

Parameter influence on passive dynamic walking of a robot with flat feet

Xiangze Lin, Haibo Du, Shihua Li (2013)

Kybernetika

The biped robot with flat feet and fixed ankles walking down a slope is a typical impulsive dynamic system. Steady passive gaits for such mechanism can be induced on certain shallow slopes without actuation. The steady gaits can be described by using stable non-smooth limit cycles in phase plane. In this paper, it is shown that the robot gaits are affected by three parameters, namely the ground slope, the length of the foot, and the mass ratio of the robot. As the ground slope is gradually increased,...

Particle Dynamics Modelling of Cell Populations

N. Bessonov, P. Kurbatova, V. Volpert (2010)

Mathematical Modelling of Natural Phenomena

Evolution of cell populations can be described with dissipative particle dynamics, where each cell moves according to the balance of forces acting on it, or with partial differential equations, where cell population is considered as a continuous medium. We compare these two approaches for some model examples

Particles in the superworldline and BRST

Eugenia Boffo (2022)

Archivum Mathematicum

In this short note we discuss N -supersymmetric worldlines of relativistic massless particles and review the known result that physical spin- N / 2 fields are in the first BRST cohomology group. For N = 1 , 2 , 4 , emphasis is given to particular deformations of the BRST differential, that implement either a covariant derivative for a gauge theory or a metric connection in the target space seen by the particle. In the end, we comment about the possibility of incorporating Ramond-Ramond fluxes in the background.

Particles, phases, fields

L. Wojtczak, A. Urbaniak-Kucharczyk, I. Zasada, J. Rutkowski (1996)

Banach Center Publications

The physical properties of particles and phasesare considered in connection with their description by means of the deformation of space-time. The analogy between particle trajectories and phase boundaries is discussed. The geometry and its curvature is related to the Clifford algebraic structure whose construction in terms of the theory of deformation leads to the expected solutions for correlation functions referring to spectroscopy and scattering problems. The stochastic nature of space-time is...

Pattern Formation of Competing Microorganisms in Sediments

Y. Schmitz, M. Baurmann, B. Engelen, U. Feudel (2010)

Mathematical Modelling of Natural Phenomena

We present a three species model describing the degradation of substrate by two competing populations of microorganisms in a marine sediment. Considering diffusion to be the main transport process, we obtain a reaction diffusion system (RDS) which we study in terms of spontaneous pattern formation. We find that the conditions for patterns to evolve are likely to be fulfilled in the sediment. Additionally, we present simulations that are consistent with experimental data from the literature. We...

Periodic orbits close to elliptic tori and applications to the three-body problem

Massimiliano Berti, Luca Biasco, Enrico Valdinoci (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We prove, under suitable non-resonance and non-degeneracy “twist” conditions, a Birkhoff-Lewis type result showing the existence of infinitely many periodic solutions, with larger and larger minimal period, accumulating onto elliptic invariant tori (of hamiltonian systems). We prove the applicability of this result to the spatial planetary three-body problem in the small eccentricity-inclination regime. Furthermore, we find other periodic orbits under some restrictions on the period and the masses...

Periodic solutions for second order Hamiltonian systems

Qiongfen Zhang, X. H. Tang (2012)

Applications of Mathematics

By using the least action principle and minimax methods in critical point theory, some existence theorems for periodic solutions of second order Hamiltonian systems are obtained.

Periodic solutions for second-order Hamiltonian systems with a p -Laplacian

Xianhua Tang, Xingyong Zhang (2010)

Annales UMCS, Mathematica

In this paper, by using the least action principle, Sobolev's inequality and Wirtinger's inequality, some existence theorems are obtained for periodic solutions of second-order Hamiltonian systems with a p-Laplacian under subconvex condition, sublinear growth condition and linear growth condition. Our results generalize and improve those in the literature.

Periodic solutions to Lagrangian system

Oleg Zubelevich (2018)

Commentationes Mathematicae Universitatis Carolinae

A classical mechanics Lagrangian system with even Lagrangian is considered. The configuration space is a cylinder m × 𝕋 n . A large class of nonhomotopic periodic solutions has been found.

Currently displaying 1 – 20 of 51

Page 1 Next