Page 1

Displaying 1 – 13 of 13

Showing per page

Incomplete information and risk sensitive analysis of sequential games without a predetermined order of turns

Rubén Becerril-Borja, Raúl Montes-de-Oca (2021)

Kybernetika

The authors introduce risk sensitivity to a model of sequential games where players don't know beforehand which of them will make a choice at each stage of the game. It is shown that every sequential game without a predetermined order of turns with risk sensitivity has a Nash equilibrium, as well as in the case in which players have types that are chosen for them before the game starts and that are kept from the other players. There are also a couple of examples that show how the equilibria might...

Infinite asymptotic games

Christian Rosendal (2009)

Annales de l’institut Fourier

We study infinite asymptotic games in Banach spaces with a finite-dimensional decomposition (F.D.D.) and prove that analytic games are determined by characterising precisely the conditions for the players to have winning strategies. These results are applied to characterise spaces embeddable into p sums of finite dimensional spaces, extending results of Odell and Schlumprecht, and to study various notions of homogeneity of bases and Banach spaces. The results are related to questions of rapidity...

Infinite games and chain conditions

Santi Spadaro (2016)

Fundamenta Mathematicae

We apply the theory of infinite two-person games to two well-known problems in topology: Suslin’s Problem and Arhangel’skii’s problem on the weak Lindelöf number of the G δ topology on a compact space. More specifically, we prove results of which the following two are special cases: 1) every linearly ordered topological space satisfying the game-theoretic version of the countable chain condition is separable, and 2) in every compact space satisfying the game-theoretic version of the weak Lindelöf...

Interval valued bimatrix games

Milan Hladík (2010)

Kybernetika

Payoffs in (bimatrix) games are usually not known precisely, but it is often possible to determine lower and upper bounds on payoffs. Such interval valued bimatrix games are considered in this paper. There are many questions arising in this context. First, we discuss the problem of existence of an equilibrium being common for all instances of interval values. We show that this property is equivalent to solvability of a certain linear mixed integer system of equations and inequalities. Second, we...

Currently displaying 1 – 13 of 13

Page 1