The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
502
This paper deals with some properties of α1-matrices and α2-matrices which are subclasses of nonsingular H-matrices. In particular, new characterizations of these two subclasses are given, and then used for proving algebraic properties related to subdirect sums and Hadamard products.
A matrix is said to have -simple image eigenspace if any eigenvector belonging to the interval is the unique solution of the system in . The main result of this paper is a combinatorial characterization of such matrices in the linear algebra over max-min (fuzzy) semiring. The characterized property is related to and motivated by the general development of tropical linear algebra and interval analysis, as well as the notions of simple image set and weak robustness (or weak stability) that...
The nullity of a graph is the multiplicity of zero as an eigenvalue in the spectrum of its adjacency matrix. From the interlacing theorem, derived from Cauchy’s inequalities for matrices, a vertex of a graph can be a core vertex if, on deleting the vertex, the nullity decreases, or a Fiedler vertex, otherwise. We adopt a graph theoretical approach to determine conditions required for the identification of a pair of prescribed types of root vertices of two graphs to form a cut-vertex of unique...
The eigenvalues of graphs are related to many of its combinatorial properties. In his fundamental work, Fiedler showed the close connections between the Laplacian eigenvalues and eigenvectors of a graph and its vertex-connectivity and edge-connectivity. We present some new results describing the connections between the spectrum of a regular graph and other combinatorial parameters such as its generalized connectivity, toughness, and the existence of spanning trees with bounded degree.
This article considers a class of finite-dimensional linear impulsive time-varying systems for which various sufficient and necessary algebraic criteria for complete controllability, including matrix rank conditions are established. The obtained controllability results are further synthesised for the time-invariant case, and under some special conditions on the system parameters, we obtain a Popov-Belevitch-Hautus (PBH)-type rank condition which employs eigenvalues of the system matrix for the investigation...
By max-plus algebra we mean the set of reals equipped with the operations and for A vector is said to be a generalized eigenvector of max-plus matrices if for some . The investigation of properties of generalized eigenvectors is important for the applications. The values of vector or matrix inputs in practice are usually not exact numbers and they can be rather considered as values in some intervals. In this paper the properties of matrices and vectors with inexact (interval) entries...
We establish a connection between the L² norm of sums of dilated functions whose jth Fourier coefficients are for some α ∈ (1/2,1), and the spectral norms of certain greatest common divisor (GCD) matrices. Utilizing recent bounds for these spectral norms, we obtain sharp conditions for the convergence in L² and for the almost everywhere convergence of series of dilated functions.
A function on which is -invariant is convex if and only if its restriction to the subspace of diagonal matrices is convex. This results from Von Neumann type inequalities and appeals, in the case where , to the notion of signed singular value.
Currently displaying 101 –
120 of
502