The search session has expired. Please query the service again.
This paper is devoted to an analysis of vortex-nucleation
for a Ginzburg-Landau functional with
discontinuous constraint. This functional has been proposed
as a model for vortex-pinning, and usually
accounts for the energy
resulting from the interface of two superconductors. The
critical applied magnetic field for vortex nucleation is estimated in
the London singular limit,
and as a by-product, results concerning vortex-pinning and
boundary conditions on the interface are obtained.
We study the time-harmonic acoustic scattering in a duct in presence of a flow and of a discontinuous impedance boundary condition. Unlike a continuous impedance, a discontinuous one leads to still open modeling questions, as in particular the singularity of the solution at the abrupt transition and the choice of the right unknown to formulate the scattering problem. To address these questions we propose a mathematical approach based on variational formulations set in weighted Sobolev spaces. Considering...
In this paper we consider the Neumann problem involving a critical Sobolev exponent. We investigate a combined effect of the coefficient of the critical Sobolev nonlinearity and the mean curvature on the existence and nonexistence of solutions.
This paper deals with phase transitions corresponding to an energy which is the sum of a kinetic part of -Laplacian type and a double well potential with suitable growth conditions. We prove that level sets of solutions of possessing a certain decay property satisfy a mean curvature equation in a suitable weak viscosity sense. From this, we show that, if the above level sets approach uniformly a hypersurface, the latter has zero mean curvature.
In the present paper we survey some recents results concerning existence of semiclassical standing waves solutions for nonlinear Schrödinger equations. Furthermore, from Maxwell's equations we derive a nonlinear Schrödinger equation which represents a model of propagation of an electromagnetic field in optical waveguides.
The approximation of a mixed formulation of elliptic variational inequalities is studied. Mixed formulation is defined as the problem of finding a saddle-point of a properly chosen Lagrangian on a certain convex set . Sufficient conditions, guaranteeing the convergence of approximate solutions are studied. Abstract results are applied to concrete examples.
In this Note we consider the following problem where is a bounded smooth starshaped domain in , , , , and . We prove that if is a solution of Morse index than cannot have more than maximum points in for sufficiently small. Moreover if is convex we prove that any solution of index one has only one critical point and the level sets are starshaped for sufficiently small.
We prove several optimal Moser–Trudinger and logarithmic Hardy–Littlewood–Sobolev
inequalities for systems in two dimensions. These include inequalities on the sphere , on a bounded domain and on all of . In some cases we also address the question of existence of minimizers.
In this work we consider the magnetic NLS equationwhere , is a magnetic potential, possibly unbounded, is a multi-well electric potential, which can vanish somewhere, is a subcritical nonlinear term. We prove the existence of a semiclassical multi-peak solution to (0.1), under conditions on the nonlinearity which are nearly optimal.
Currently displaying 1 –
20 of
65