Page 1 Next

Displaying 1 – 20 of 66

Showing per page

Le problème de Lehmer relatif en dimension supérieure

Emmanuel Delsinne (2009)

Annales scientifiques de l'École Normale Supérieure

Nous généralisons en dimension supérieure un théorème d’Amoroso et Zannier concernant le problème de Lehmer relatif. Nous minorons la hauteur d’un point d’un tore en fonction de son indice d’obstruction sur ab , l’extension abélienne maximale de , à condition qu’il ne soit pas contenu dans une sous-variété de torsion de petit degré. Nous en déduisons une minoration du minimum essentiel d’une sous-variété non contenue dans un sous-groupe algébrique propre en fonction de son indice d’obstruction sur...

Leaping convergents of Hurwitz continued fractions

Takao Komatsu (2011)

Discussiones Mathematicae - General Algebra and Applications

Let pₙ/qₙ = [a₀;a₁,...,aₙ] be the n-th convergent of the continued fraction expansion of [a₀;a₁,a₂,...]. Leaping convergents are those of every r-th convergent p r n + i / q r n + i (n = 0,1,2,...) for fixed integers r and i with r ≥ 2 and i = 0,1,...,r-1. The leaping convergents for the e-type Hurwitz continued fractions have been studied. In special, recurrence relations and explicit forms of such leaping convergents have been treated. In this paper, we consider recurrence relations and explicit forms of the leaping...

Leaping convergents of Tasoev continued fractions

Takao Komatsu (2011)

Discussiones Mathematicae - General Algebra and Applications

Denote the n-th convergent of the continued fraction by pₙ/qₙ = [a₀;a₁,...,aₙ]. We give some explicit forms of leaping convergents of Tasoev continued fractions. For instance, [0;ua,ua²,ua³,...] is one of the typical types of Tasoev continued fractions. Leaping convergents are of the form p r n + i / q r n + i (n=0,1,2,...) for fixed integers r ≥ 2 and 0 ≤ i ≤ r-1.

Lehmer’s conjecture for polynomials satisfying a congruence divisibility condition and an analogue for elliptic curves

Joseph H. Silverman (2012)

Journal de Théorie des Nombres de Bordeaux

A number of authors have proven explicit versions of Lehmer’s conjecture for polynomials whose coefficients are all congruent to  1 modulo  m . We prove a similar result for polynomials  f ( X ) that are divisible in  ( / m ) [ X ] by a polynomial of the form 1 + X + + X n for some n ϵ deg ( f ) . We also formulate and prove an analogous statement for elliptic curves.

Length of continued fractions in principal quadratic fields

Guillaume Grisel (1998)

Acta Arithmetica

Let d ≥ 2 be a square-free integer and for all n ≥ 0, let l ( ( d ) 2 n + 1 ) be the length of the continued fraction expansion of ( d ) 2 n + 1 . If ℚ(√d) is a principal quadratic field, then under a condition on the fundamental unit of ℤ[√d] we prove that there exist constants C₁ and C₂ such that C ( d ) 2 n + 1 l ( ( d ) 2 n + 1 ) C ( d ) 2 n + 1 for all large n. This is a generalization of a theorem of S. Chowla and S. S. Pillai [2] and an improvement in a particular case of a theorem of [6].

Currently displaying 1 – 20 of 66

Page 1 Next