Displaying 581 – 600 of 1536

Showing per page

Integral identities and constructions of approximations to zeta-values

Yuri V. Nesterenko (2003)

Journal de théorie des nombres de Bordeaux

Some general construction of linear forms with rational coefficients in values of Riemann zeta-function at integer points is presented. These linear forms are expressed in terms of complex integrals of Barnes type that allows to estimate them. Some identity connecting these integrals and multiple integrals on the real unit cube is proved.

Interpolation sur des perturbations d’ensembles produits

Damien Roy (2002)

Bulletin de la Société Mathématique de France

On démontre un résultat concernant l’interpolation de fonctions analytiques sur une perturbation d’ensemble produit qui, dans le cas p -adique, répond à une conjecture de P.Robba et, dans le cas complexe, complète des résultats antérieurs de E.Bombieri, S.Lang, D.Masser, J.-C.Moreau et M.Waldschmidt.

Intersection de courbes et de sous-groupes et problèmes de minoration de hauteur dans les variétés abéliennes C.M.

Nicolas Ratazzi (2008)

Annales de l’institut Fourier

Nous prouvons un cas particulier de la conjecture suivante e Zilber-Pink, conjecture généralisant celle de Manin-Mumford  : soit X une courbe incluse dans une variété abélienne A sur ¯ , qui n’est pas incluse dans une sous-variété de torsion  ; l’intersection de X avec la réunion de tous les sous-groupes de codimension au moins 2 est finie. Nous démontrons ici le cas où A est une puissance d’une variété abélienne C.M. simple. La preuve reprend la stratégie de Rémond (suivant Bombieri-Masser-Zannier)...

Introduction to Diophantine Approximation

Yasushige Watase (2015)

Formalized Mathematics

In this article we formalize some results of Diophantine approximation, i.e. the approximation of an irrational number by rationals. A typical example is finding an integer solution (x, y) of the inequality |xθ − y| ≤ 1/x, where 0 is a real number. First, we formalize some lemmas about continued fractions. Then we prove that the inequality has infinitely many solutions by continued fractions. Finally, we formalize Dirichlet’s proof (1842) of existence of the solution [12], [1].

Introduction to Liouville Numbers

Adam Grabowski, Artur Korniłowicz (2017)

Formalized Mathematics

The article defines Liouville numbers, originally introduced by Joseph Liouville in 1844 [17] as an example of an object which can be approximated “quite closely” by a sequence of rational numbers. A real number x is a Liouville number iff for every positive integer n, there exist integers p and q such that q > 1 and [...] It is easy to show that all Liouville numbers are irrational. Liouville constant, which is also defined formally, is the first transcendental (not algebraic) number. It is...

Currently displaying 581 – 600 of 1536