Displaying 681 – 700 of 1536

Showing per page

Lucas factoriangular numbers

Bir Kafle, Florian Luca, Alain Togbé (2020)

Mathematica Bohemica

We show that the only Lucas numbers which are factoriangular are 1 and 2 .

Lucas sequences and repdigits

Hayder Raheem Hashim, Szabolcs Tengely (2022)

Mathematica Bohemica

Let ( G n ) n 1 be a binary linear recurrence sequence that is represented by the Lucas sequences of the first and second kind, which are { U n } and { V n } , respectively. We show that the Diophantine equation G n = B · ( g l m - 1 ) / ( g l - 1 ) has only finitely many solutions in n , m + , where g 2 , l is even and 1 B g l - 1 . Furthermore, these solutions can be effectively determined by reducing such equation to biquadratic elliptic curves. Then, by a result of Baker (and its best improvement due to Hajdu and Herendi) related to the bounds of the integral points on...

Markoff numbers and ambiguous classes

Anitha Srinivasan (2009)

Journal de Théorie des Nombres de Bordeaux

The Markoff conjecture states that given a positive integer c , there is at most one triple ( a , b , c ) of positive integers with a b c that satisfies the equation a 2 + b 2 + c 2 = 3 a b c . The conjecture is known to be true when c is a prime power or two times a prime power. We present an elementary proof of this result. We also show that if in the class group of forms of discriminant d = 9 c 2 - 4 , every ambiguous form in the principal genus corresponds to a divisor of 3 c - 2 , then the conjecture is true. As a result, we obtain criteria in terms of...

Meilleures approximations diophantiennes simultanées et théorème de Lévy

Nicolas Chevallier (2005)

Annales de l’institut Fourier

D'après le théorème de Lévy, les dénominateurs du développement en fraction continue d'un réel croissent presque sûrement à une vitesse au plus exponentielle. Nous étendons cette estimation aux meilleures approximations diophantiennes simultanées de formes linéaires.

Mersenne numbers as a difference of two Lucas numbers

Murat Alan (2022)

Commentationes Mathematicae Universitatis Carolinae

Let ( L n ) n 0 be the Lucas sequence. We show that the Diophantine equation L n - L m = M k has only the nonnegative integer solutions ( n , m , k ) = ( 2 , 0 , 1 ) , ( 3 , 1 , 2 ) , ( 3 , 2 , 1 ) , ( 4 , 3 , 2 ) , ( 5 , 3 , 3 ) , ( 6 , 2 , 4 ) , ( 6 , 5 , 3 ) where M k = 2 k - 1 is the k th Mersenne number and n > m .

Currently displaying 681 – 700 of 1536