On the linear independence of the values of Gauss hypergeometric function
Let d be a positive integer and α a real algebraic number of degree d + 1. Set . It is well-known that , where ||·|| denotes the distance to the nearest integer. Furthermore, for any integer n ≥ 1. Our main result asserts that there exists a real number C, depending only on α, such that for any integer n ≥ 1.
We investigate and refine a device which we introduced in [3] for the study of continued fractions. This allows us to more easily compute the period lengths of certain continued fractions and it can be used to suggest some aspects of the cycle structure (see [1]) within the period of certain continued fractions related to underlying real quadratic fields.
We study a family of quasi periodic -adic Ruban continued fractions in the -adic field and we give a criterion of a quadratic or transcendental -adic number which based on the -adic version of the subspace theorem due to Schlickewei.