On the values of a class of analytic functions at algebraic points
Boris Adamczewski, Yann Bugeaud, Florian Luca (2008)
Acta Arithmetica
Bugeaud, Yann (2009)
Integers
Kurt Mahler (1984)
Mathematica Scandinavica
Yann Bugeaud, Jan-Hendrik Evertse (2008)
Acta Arithmetica
Andrzej Schinzel (1967)
Acta Arithmetica
Jingcheng Tong (1985)
Journal für die reine und angewandte Mathematik
Józef Horbowicz (1987)
Acta Arithmetica
Stéphane Fischler (2001)
Acta Arithmetica
Alain Escassut (1979/1981)
Groupe de travail d'analyse ultramétrique
Ella I. Kovalevskaya (2002)
Acta Mathematica et Informatica Universitatis Ostraviensis
I., Tamura, J. Shiokawa (1990)
Aequationes mathematicae
Kunrui Yu (1999)
Acta Arithmetica
Pierre Bel (2009)
Acta Arithmetica
Hans Schlickewei (1981)
Acta Arithmetica
P. Bundschuh (1977)
Elemente der Mathematik
Kouèssi Norbert Adédji, Japhet Odjoumani, Alain Togbé (2023)
Archivum Mathematicum
Let and be the -th Padovan and Perrin numbers respectively. Let be non-zero integers with and , let be the generalized Lucas sequence given by , with and In this paper, we give effective bounds for the solutions of the following Diophantine equations where , and are non-negative integers. Then, we explicitly solve the above Diophantine equations for the Fibonacci, Pell and balancing sequences.
Maosheng Xiong, Alexandru Zaharescu (2012)
Acta Arithmetica
R. C. Baker, S. Schäffer (1992)
Acta Arithmetica
W. Dale Brownawell (1975/1976)
Séminaire Delange-Pisot-Poitou. Théorie des nombres
Boris Adamczewski, Yann Bugeaud (2007)
Annales de l’institut Fourier
In the present work, we investigate real numbers whose sequence of partial quotients enjoys some combinatorial properties involving the notion of palindrome. We provide three new transendence criteria, that apply to a broad class of continued fraction expansions, including expansions with unbounded partial quotients. Their proofs heavily depend on the Schmidt Subspace Theorem.