Displaying 301 – 320 of 1029

Showing per page

Explicit upper bounds for |L(1,χ)| when χ(3) = 0

David J. Platt, Sumaia Saad Eddin (2013)

Colloquium Mathematicae

Let χ be a primitive Dirichlet character of conductor q and denote by L(z,χ) the associated L-series. We provide an explicit upper bound for |L(1,χ)| when 3 divides q.

Extension of Estermann’s theorem to Euler products associated to a multivariate polynomial

Ludovic Delabarre (2013)

Bulletin de la Société Mathématique de France

Given a multivariate polynomial h X 1 , , X n with integral coefficients verifying an hypothesis of analytic regularity (and satisfying h ( 0 ) = 1 ), we determine the maximal domain of meromorphy of the Euler product p prime h p - s 1 , , p - s n and the natural boundary is precisely described when it exists. In this way we extend a well known result for one variable polynomials due to Estermann from 1928. As an application, we calculate the natural boundary of the multivariate Euler products associated to a family of toric varieties.

Extremal values of Dirichlet L -functions in the half-plane of absolute convergence

Jörn Steuding (2004)

Journal de Théorie des Nombres de Bordeaux

We prove that for any real θ there are infinitely many values of s = σ + i t with σ 1 + and t + such that { exp ( i θ ) log L ( s , χ ) } log log log log t log log log log t + O ( 1 ) . The proof relies on an effective version of Kronecker’s approximation theorem.

Familles de fonctions L de formes automorphes et applications

Philippe Michel (2003)

Journal de théorie des nombres de Bordeaux

Une notion importante qui a émergé de la théorie analytique des fonctions L ces dernières années, est celle de famille. Par exemple les familles de fonctions L interviennent naturellement dans le modèle probabiliste des matrices aléatoires de Katz/Sarnak qui vise à prédire la répartition des zéros des fonctions L . L’analyse des fonctions L en famille intervient également dans la résolution (inconditionnelle) de divers problèmes ayant une signification arithmétique profonde, tel que le problème de...

Flows of Mellin transforms with periodic integrator

Titus Hilberdink (2011)

Journal de Théorie des Nombres de Bordeaux

We study Mellin transforms N ^ ( s ) = 1 - x - s d N ( x ) for which N ( x ) - x is periodic with period 1 in order to investigate ‘flows’ of such functions to Riemann’s ζ ( s ) and the possibility of proving the Riemann Hypothesis with such an approach. We show that, excepting the trivial case where N ( x ) = x , the supremum of the real parts of the zeros of any such function is at least 1 2 .We investigate a particular flow of such functions { N λ ^ } λ 1 which converges locally uniformly to ζ ( s ) as λ 1 , and show that they exhibit features similar to ζ ( s ) . For example, N λ ^ ( s ) ...

Currently displaying 301 – 320 of 1029