Explicit upper bounds for |L(1,χ)| when χ(3) = 0
Let χ be a primitive Dirichlet character of conductor q and denote by L(z,χ) the associated L-series. We provide an explicit upper bound for |L(1,χ)| when 3 divides q.
Let χ be a primitive Dirichlet character of conductor q and denote by L(z,χ) the associated L-series. We provide an explicit upper bound for |L(1,χ)| when 3 divides q.
Given a multivariate polynomial with integral coefficients verifying an hypothesis of analytic regularity (and satisfying ), we determine the maximal domain of meromorphy of the Euler product and the natural boundary is precisely described when it exists. In this way we extend a well known result for one variable polynomials due to Estermann from 1928. As an application, we calculate the natural boundary of the multivariate Euler products associated to a family of toric varieties.
We prove that for any real there are infinitely many values of with and such thatThe proof relies on an effective version of Kronecker’s approximation theorem.
Une notion importante qui a émergé de la théorie analytique des fonctions ces dernières années, est celle de famille. Par exemple les familles de fonctions interviennent naturellement dans le modèle probabiliste des matrices aléatoires de Katz/Sarnak qui vise à prédire la répartition des zéros des fonctions . L’analyse des fonctions en famille intervient également dans la résolution (inconditionnelle) de divers problèmes ayant une signification arithmétique profonde, tel que le problème de...
We study Mellin transforms for which is periodic with period in order to investigate ‘flows’ of such functions to Riemann’s and the possibility of proving the Riemann Hypothesis with such an approach. We show that, excepting the trivial case where , the supremum of the real parts of the zeros of any such function is at least .We investigate a particular flow of such functions which converges locally uniformly to as , and show that they exhibit features similar to . For example, ...